
pecific
ed by
parated
 evolve
quence
tances.
r when a
e the

system
ns are
lti-layer
i-layer
lowest
cts
s to the
er
l (i.e. a

es, be
product
tems
een

d. The
Patterns for Multi-Layered System Architectures

P. Brooks1, C. Koch2, Z. Kovacs1, J-M Le Goff2, R. McClatchey1

1Centre for Complex Cooperative Systems, Univ. West of England, Bristol BS16 1QY, UK
2EP Division, CERN, 1211 Geneva 23, Switzerland

Email: Richard.McClatchey@cern.ch

Abstract
The CRISTAL project has studied the use of a meta-model representation to
manage the evolving needs of a large physics community. The meta-model is based
on a multi-layered architecture and provides a description of the system to be built.
This description is accessed by multiple applications and as the range of application
domains grows, new requirements have to be satisfied which require extension of
the meta-model. This paper reports on the building of a multi-layered system
architecture by abstraction from this meta-model. It identifies design patterns that
emerge from building the ontology which underpin all such ‘description-driven’
systems. The approach is evaluated in the domain of large-scale physics detector
construction at the European Particle Physics laboratory, CERN.

Description-Driven Systems and Multi-Layer Architectures

‘Description-driven systems’ can be defined as systems in which the description of a domain-s
configuration is captured in a computer-readable form. This description can be interpret
applications to achieve domain-specific goals. In a description-driven system descriptions are se
from instances and managed independently, to allow the descriptions to be specified and to
asynchronously from particular instantiations (and executions) of those descriptions. As a conse
a description-driven system requires computer-readable models both for descriptions and for ins
These models are loosely coupled and coupling only takes place when instances are created o
description, corresponding to existing instantiations, is modified. The coupling is loose sinc
lifecycle of each instantiation is independent from the lifecycle of its corresponding description.

One practical example of the use of a description-driven systems is a workflow management
(WfM) where the business process model defines the instantiated workflows and the definitio
managed and enacted separately from the instantiations. WfM systems can be built on a mu
architecture and recently the OMG have standardised the architecture of WfMs using a mult
model [1]. In WfM systems the workflow instances (such as activities or tasks) correspond to the
level of system abstraction - the instance layer (see Figure 1). In order to instantiate the workflow obje
a workflow scheme is required. This scheme describes the workflow instances and correspond
next layer of abstraction - the model layer. In order for the workflow scheme itself to be built, a furth
model is required to store the semantics for the generation of the workflow scheme. This mode
model describing another model) is the next layer of system abstraction, the meta-model layer (Figure 1).

The semantics required to adequately model application-specific information will, in most cas
different. For example, the semantics for describing Product Data Management (PDM) systems (
types, product composition types etc.) will be very different from those describing WfM sys
(activity types, activity composition types, actor types, etc.). To facilitate integration betw
meta-models a universal type language capable of describing all meta-information is require

common approach is to define an abstract language which is capable of defining another language for
specifying a particular meta-model, in other words meta-meta-information. The accepted conceptual
framework for meta-modeling is based on an architecture with four layers: Figure 1 illustrates the four
layer meta-modeling architecture adopted by the OMG, based on the ISO 11179 standard.

The meta-meta-model layer is the layer responsible for defining a general modeling language for
specifying meta-models. This top layer is the most abstract and must have the capability of modeling any
meta-model. It comprises the design artifacts in common to any meta-model. At the next layer down a
(domain specific) meta-model is an instance of a meta-meta-model. It is the responsibility of this layer
to define a language for specifying models, which is itself defined in terms of the meta-meta types of the
meta-meta modeling layer above. Examples of objects at this level from manufacturing include
workflow process description, nested subprocess description and product descriptions. A model at layer
two is an instance of a meta-model. The primary responsibility of the model layer is to define a language
that describes a particular information domain. Example objects for the manufacturing domain would be
product, measurement, production schedule, composite product. At the lowest level user objects are an
instance of a model and describe a specific information and application domain.

A recent thesis [2] studied the integration of product data and workflow management through a common
description-driven data model for the CRISTAL project. In building the data model a set of design
patterns [3] were identified including the item description pattern, an enriched directed acyclic graph
pattern, a publish/subscribe pattern, a version pattern, an enriched homomorphism pattern and use of a
mediator pattern for retrieval of information from the integrated product and process data model. It was
speculated that these design patterns are part of the essential elements of any description-driven system.
Figure 2 shows how the item description pattern allows the dependency between a description and its
instantiation to be handled. In the figure the item description pattern has been employed to provide the
semantics that relate the Item class (of the model layer) with the ItemDescription class of the meta-model
layer. The pattern can also be applied to relate an Item instance (at the instance layer) with its
corresponding ItemDescription instance (at the model layer). The multi-layer architecture which forms
the basis of a description-driven system is a direct consequence of the use of the ItemDescription pattern.
Later in this paper these patterns are used to build an ontology which facilitates not only product and
process integration, but the development of an enterprise model which spans multiple domains.

Workflow Meta-Model

Workflow Schemes or Models

Workflow Instances

defines

Workflow Type Repository

Workflow Execution
Components

Meta-Model Layer

Model Layer

Instance Layer

Layers Content of a Layer Architectural Components of a Layer

defines

manages

manages

MOF Meta-Meta-model

Meta-Object Facility

Meta-Meta-Model Layer

manages

defines

Figure 1: Workflow management systems as description-driven systems.

oints’)

cts and
his paper
ned for
ion and
nted. A
rocess

with a
and

N, the
ins by
ccess
raction

opean
ental
 being

 CERN.
Description-driven systems features can be realised through the adoption of a multi-layered architecture.
Description-driven systems are flexible and provide many powerful features including reusability,
complexity handling, versioning, system evolution and interoperability The study reported in this paper
investigates how product and process information can be handled through the use of a common
meta-model in a so-called description-driven system. The description-driven approach is outlined and its
role in integrating product and process models for a data warehouse example is identified. The resulting
meta-model is general in form and can be used to produce materialised views (so-called ‘viewp
onto the data warehouse.

Essentially the meta-model can be used as the basis of an ontology describing how produ
processes are inter-related, as it is predicated on a set of basic concepts and their relationships. T
shows how a domain-specific ontology can be abstracted from a description-driven system desig
that domain, how a domain non-specific ontology is a natural extension of this process of abstract
how, using this ontology, specific knowledge bases describing specific domains can be impleme
prototype has been developed which facilitates this study of a common ontology for product and p
modeling. The objective of this prototype is to integrate a Product Data Management model
Workflow Management model in the context of the CRISTAL (Cooperating Repositories
Information System for Tracking Assembly Lifecycles) project currently being undertaken at CER
European Laboratory for Particle Physics in Geneva, Switzerland. This position paper beg
describing the CRISTAL environment in the following section. In the third section, the need to a
data through different views is discussed, and in the following section, the need for further abst
is elaborated on. Finally, a conclusion and further remarks is presented.

The CRISTAL Project

The Compact Muon Solenoid (CMS) experiment [4], currently being constructed at the Eur
Laboratory for Particle Physics at CERN, will comprise several complex detectors for fundam
particle physics research. The CRISTAL system is a distributed product data and workflow system
developed to monitor and control the production and assembly process of the CMS detector at

Figure 2: The CRISTAL three-layer architecture.

ItemDescription

ItemDescription1

Item

Item1

«InstanceOf»

CRISTAL Specification
Component(s)

Meta-Model Layer

Model Layer

Instance Layer

Layers Content of a Layer Architectural Components of a Layer

manages

manages

CRISTAL Execution
Component(s)

«InstanceOf»

defines

<
<

Ite
m

D
es

c
pa

tte
rn

>
>

<
<

Ite
m

D
es

c
pa

tte
rn

>
>

defines

litates

cts of the
ruction
ry has

for this
stem is

 class
, and
 shows
 or part
ge of

sses is
xity by
cyclic)
ded to
bility

odel,
nd other
ions, for
site in
e data
ivities,
In essence, CRISTAL employs WfM and PDM techniques to provide an infrastructure in which the
engineering data describing the detector and amounting to a few Terabytes can be warehoused [5]. This
detector description will later be used in the capture of several Petabytes of physics events once the CMS
experiment gets underway from 2006 onwards.

The design of the CRISTAL prototype was dictated by the requirements for adaptability over extended
timescales, for system evolution, for interoperability and for complexity handling and reusability. In
adopting a description-driven design approach to address these requirements, a separation of object
instances from object descriptions instances was needed. This abstraction resulted in the delivery of a
meta-model as well as a model for CRISTAL. The assembly of CMS is being carried out by groups,
distributed geographically over several continents, with responsibilities for individual sub-detectors.
Each group needs to be only loosely coupled to others for final detector integration and must preserve
their autonomy during the assembly process. Each CRISTAL system is set up to manage the
accumulation of potentially Terabytes of physical characteristic data into a detector data warehouse
during the construction of a particular CMS sub-detector. The construction follows a specific production
plan and each detector is assembled and tested in a step-wise fashion. A distributed object-oriented
database is used to hold both the engineering data and the definitions of the detector components and of
the tasks which are performed on the components.

An approach has been taken in the CRISTAL design, which promotes self-description and data
independence. A multi-layer architecture has been developed to cater for the CRISTAL (meta-)model
which facilitates data integration. This allows separation of definitions from instantiations through the
use of so-called ‘meta-objects’, promotes object re-use, reduces complexity and faci
self-description.

Accessing Data from Multiple Views

As any construction process evolves, so more data, and the relationships between different aspe
data, must be permanently recorded in the construction repository. To cope with this the const
system used must, ideally, be able to support dynamic self-reconfiguration. The CRISTAL reposito
been designed to be self-describing i.e. to retain knowledge about its dynamic structure and
knowledge to be available to the rest of the distributed infrastructure through the way that the sy
plugged together.

The CRISTAL meta-model is comprised of so-called ‘meta-objects’ each of which is defined for a
of significance in the data model: e.g part definitions for parts, activity definitions for activities
executor definitions for executors (e.g instruments, automatically-launched code etc.). Figure 3
the meta-object concept. In the model information is stored at specification time for types of parts
definitions and at assembly time for individual instantiations of part definitions. At the design sta
the project information is stored against the definition object and only when the project progre
information stored on an individual part basis. This meta-object approach reduces system comple
promoting object reuse and translating complex hierarchies of object instances into (directed a
graphs of object definitions. It is believed that the use of meta-objects provides the flexibility nee
cope with their evolution over the extended timescales of CRISTAL production and the flexi
required to cope with ad-hoc activity specification.

In designing the CRISTAL meta-model, UML has been followed; the result being a detailed m
presented elsewhere [6]. This model describes relationships, types, inheritance, containment a
associations between the meta objects in the system. The meta-objects in the model are definit
example, part definitions or activity definitions and the definitions are either elementary or compo
nature. CompositeMember objects capture the membership of objects in other objects. Th
description world of, in this example, parts and the process description world of, in this case act
displays an elegant symmetry with respect to compositeness.

hanism
 in the
 facility
lication
The data model developed for CRISTAL has been designed to be generally applicable to production
management environments. In fact the model, shown in Figure 3, is sufficiently generic in nature to
describe many applications in which both data descriptions and activity descriptions (and their
inter-relationships) are captured in a database and in which traceability is required of each execution of
an activity on a part or product. The structure of the CRISTAL data model is based on directed acyclic
graphs describing physical and catalogue aggregation as defined by [7]. However, the object model
proposed in [7], although also based on directed acyclic graphs, does not provide semantics for the
relationship between physical and catalogue aggregation nor does it explicitly capture the membership
of one object in its aggregate, as in the CRISTAL model. The CRISTAL model is rich in semantics and,
consequently, could be applied to general aggregation-based data management systems.

Figure 3 shows that there is an association between a given activity meta-object definition and a named
part meta-object definition and that this association carries semantics. The left side of Figure 3 captures
the product aspects of the meta-model and the right side the process aspects, as needed to integrate PDM
and WfM. The CRISTAL data model has been designed so that each assignment of a Part Definition to
an Activity Definition is declared for a specific purpose. In detector construction, the assignment is made
to indicate the activity to be instantiated for the assembly of a particular instance of a part of a given part
definition. Each assignment has associated with it some conditions: in detector construction, the data
model captures the definition of the conditions required for each assignment of an activity definition to
a part definition.

This technique can be generalised for other applications. For example, the association of a maintenance
activity to a part will require quite different conditions to be captured than when the detector was
constructed. Also, the association of a calibration activity to a part would require calibration-specific
conditions to be captured. In other words, the identified association between the process and part
description worlds carries rich semantics. It allows many other links to be made between aspects of the
overall CRISTAL data model: the same mechanism can be used to assign agents to activity definitions
for the purposes of enactment or the assignment of agents to part definitions for the purposes of resource
management. In the following section of this paper this mechanism is shown to be useful in building an
ontology which relates product and process worlds for knowledge retrieval. Users will require flexible
ways to find, access and share data captured in the construction data warehouse. The actual information
required will depend on the "viewpoint" and the role of the user in the organisation. A meta-model will
assist the retrieval of information for selected detector components provided a ‘meta-query’ mec
is developed which can navigate the warehouse meta-model, can interpret the structures
warehouse and can present the data in a form meaningful to the end-user. The meta-query
comprises a set of software processes which can be invoked either by a viewpoint-specific app
or by a viewpoint non-specific application.

Figure 3: Subset of the CRISTAL meta-model.

PartDefinition

CompositePartDef ElementaryPartDef

PartCompositeMember

0..n

ActivityDefinition

ElementaryActDef CompositeActDef

ActCompositeMember

0..n

0..n

0..1

Conditions

0..n 0..n

1
0..n

1
0..n

tween
 the

ree and
ries are
ints i.e

 which
t these
cations.
having a
 can
data
 set of

ts.

n nature
 of the
ces of
 in the

rovided
 of the

wpoints
schema
a will
The queries either navigate a generalised warehouse meta-model to project out viewpoint-specific data
(i.e.”looking out” from the meta-model) or they navigate the meta-model to correlate effects be
viewpoints (i.e. “looking in” the data model). In the viewpoint-specific case the agents perform
traversal of the detector description, following selected detector components in the construction t
extract the relevant physics data for the application. In the viewpoint non-specific case, the que
used to determine the effect of a system-wide change on individual viewpoints or sets of viewpo
across viewpoints.

Figure 4, described in detail in [5], shows the architecture of a meta-model based system for CMS
encompasses multiple viewpoint databases (e.g Geometry, Calibration, Construction). In effec
databases are static ‘materialised views’ of the data in the warehouse, extracted for specific appli
In each case data has been extracted from a general CMS detector description database (
description-driven architecture) via the meta-query facility. This generalised extraction facility
navigate the detector description, from a physicist-defined viewpoint, looking for specific
associated with a set of user-defined detector components. The result is a totally integrated
collaborating databases which can be navigated for data extraction from a selection of viewpoin

The Need for Further Abstraction

In Figure 4 the detector description database lies at the heart of the system. Being multi-layered i
it can cope with evolving product and process definitions and it can also capture the description
viewpoints (or materialised views of the data warehouse). The outlying viewpoints contain instan
data items which have been extracted from the data warehouse according to their definitions
detector description database. The viewpoint solution to data sharing is sufficient for end-users p
that the viewpoints are read only databases. The viewpoints are static in nature - any evolution
viewpoint content must be catered for centrally in the detector description database.

For some product and process domains this restriction is too severe. In these domains the vie
themselves must be writable and must be allowed to evolve with time and in these cases
evolution in the viewpoints cannot be prevented. In the CRISTAL example, petabytes of dat

Figure 4: A generalised meta-model and query facility for CMS.

ultimately need to be written in a viewpoint database which captures experimental physics data. The
natural solution is to extend the description-driven approach to span not only the central detector
description databases, but for it also to include the viewpoint databases. In this way, evolution is handled
in each of the materialised views. There are two ways of extending the description-driven approach to
cater for multiple domains. Either the detector description model and its meta-model have to be enriched
to cater for a collection of domains (which requires all domain-specific software to be adapted) or the
system is seen as a collection of separate domains that all have their own model and meta-model layers.
The latter approach has been adopted to minimise management difficulty in CRISTAL.

As an example of extending the description-driven approach to cater for multiple domains consider the
following example. Information gathered for a particular detector element during the construction of the
detector will evolve over time and the data will be captured, and its evolution handled in the detector
description database. Simultaneously, the same detector elements may be accessed for a variety of
purposes e.g. alignment and controls and each purpose may have its own granularity of components
defined. In addition, these granularities may change with time and new domain-specific data may be
made persistent for each granularity. Viewpoints describing how detector elements are accessed (in this
case for alignment and controls) may evolve in a manner independent from how these detector elements
are being assembled (in the detector description database). Consequently, a new description - a
functional view - of the detector is required, which maps more appropriately to the required data
representations of the domains. Figure 5 shows how the OMG four-layer architecture for multiple
domains can be used as the basis of a cross-domain ontology.

In summary a higher level of abstraction to an ontological layer is required to cater for multiple domains.
In the construction domain, data are represented in a product tree, in which compositions are made not
according to conceptual aggregation but strictly following the way components are assembled in
constructing the detector. On the other hand, in the domains of part usage (e.g in alignment or control),
the data model is structured by the way the detector is read out, that is the granularity in which
measurements are taken during detector operation. A further need for abstraction to an ontology becomes
apparent when the querying of domain information is investigated. To enable a study of viewpoint
extraction, a prototype performing the translation of the stored construction data into appropriate
representations has been implemented. An existing deductive database engine (called dlv, based on
concepts developed in [8]) has been used to handle domain-specific queries. Details of dlv are presented
elsewhere [9]. The query facility uses the CRISTAL meta-model to specify the queries that need to be
executed for viewpoint extraction and to optimise access to the terabyte-sized construction database. To

Meta-Layer

Model Layer

Instance Layer

Domain 1 Domain 2

Ontology

(Meta-meta-Data)

(Meta-Data)

(Data)

Figure 5: The OMG four-layer architecture across multiple domains.

facilitate this, dlv needs to access both the meta-model and the model layers in order to translate queries
specified by the user at the meta-model layer into the appropriate set of queries at the model layer.

In the prototype an agent-based system is being built up integrating many different databases from
different domains with the different applications using the common ontology. Data extracted from the
CRISTAL repository can be published to a set of agents that can perform different tasks. One category
of agents performs analysis algorithms, where different versions of algorithms, performing the same
analysis but using different methods, may co-exist. Other agents perform histogramming of data, and
others collect and store computed data (such as calibration coefficients). Yet another type of agents
provides access to the viewpoints, i.e. to the detector description and to characteristics of detector
components. Besides these agents, there are those that have to generate viewpoints from data of different
domains, as well as agents that perform cross-computations concerning several viewpoints. For this,
agents have to work with the meta-models of several domains, which they need for their common virtual
world in which they are able to communicate. Consequently, agents need to refer to a higher level of
abstraction than the meta-model and therefore require ontological information.

Additionally, agents need an additional layer of abstraction to be able to communicate in terms that are
appropriate to the meta-model layer. By adding another layer of description above the meta-layer, the
process of abstraction can be extended into a meta-meta-model. Through the use of this fourth layer,
schema evolution can be truly made unnecessary, as this highest level of abstraction incorporates a model
of object-orientation. In Figure 6 three meta-models are shown : those of the construction, calibration
and simulation/reconstruction domains. These domains are correlated - the evolution of data in one
domain (e.g the construction) effects data in other domains (e.g. calibration). Each domain has its own
meta-model and meta-data and viewpoints can be constructed on a domain-by-domain basis. To allow
inter-domain meta-model navigation a global ontology is required, as shown in Figure 6.

Construction
Meta-Data

Storage

Construction
Database

Global Ontology

Construction
Viewpoint

Calibration
Meta-Data

Storage

Calibration
Database

Calibration
Viewpoint

Simulation
Viewpoint

Simulation/
Reconstruction

Meta-Data
Storage

Simulation/
Reconstruction

Database

Figure 6: Towards a global ontology by adding a meta-meta model layer.

Towards an Ontology of Description-Driven Systems

In implementing the prototype ontology, it was decided to utilise the UML meta-model [10]. Using it to
build a model of object-orientation as the meta-meta-model of the system, it is possible to integrate
different application domains and to construct a global meta-meta-data repository. This repository is a
collection of all the domain meta-models and it should experience monotonic growth as the only way of
change, since meta-models undergo careful analysis and design phases. This incorporation of a
meta-meta-model into the system allows use of the meta-model as the abstract medium of
communication for the agents, and as the execution of the aforementioned meta-query facility.

In building an ontology, meta-models of different application domains have been used to enable
communication between software agents. However, having access to meta-models alone at the highest
level of abstraction is insufficient for applications accessing the ontology. In addition the model of the
data (i.e. its schema) must be available for applications to query. Then the meta-model describes an
abstraction of all the objects of the system whereas the model specifies how instances of the objects,
specific to a domain, are specified and together they provide the knowledge required by agents about the
system and how it can be accessed. Consequently, not only are both meta- model and model layers
required by agents in an ontology, but these two layers must be tightly coupled.

Earlier research [2] has shown that there are certain distinguished design patterns that recur in many
different application domains (e.g. those of PDM and WfM discussed earlier) and that should also be
formally specified in the ontology. It is easy to model these patterns in an ontological formalism since
they are architectural patterns, identified by their structure and relationships. In Figure 2 the
ItemDescription pattern was identified as being central to the construction of a description-driven
system. It is through use of the ItemDescription pattern that tight coupling is achieved between the
meta-model and model layers of the ontology.

Another important element of description-driven system is the homomorphism pattern which describes
how two ItemDescription patterns are related. As a consequence of using the ItemDescription pattern
semantics in the homomorphism pattern, and the fact that semantics (conditions) have been added to the
association between item descriptions, there will necessarily be semantics attached to the association of
one item class to another. However, the constraints that result from the use of the homomorphism pattern
cannot be modeled with UML but need to be part of the ontology. One way of representing these
constraints is through the expressive power of propositional logic. As an example, consider an acyclic
graph pattern appearing as part of the meta-model of a specific domain. That acyclic graph pattern will
translate into a tree pattern at the model layer via the ItemDescription pattern. Using UML it is not
possible to express the fact that a node in an instance of the graph pattern (at the meta-model layer)
cannot recursively appear. As a consequence it is also not possible to preclude this in the instantiated tree
at the model layer. In this case, on top of modeling these patterns in an ontological formalism, it is
necessary to cater for the constraints between meta-model and model layers, and inside a layer, through
a mechanism such as propositional logic.

One other important aspect that is required by description-driven systems and which must appear in an
ontology, which has been abstracted from a description-driven system, is that of versioning. As stated
earlier, versioning between multiple layers in a description-driven system must be asynchronous.
However, versioning itself is not part of object-oriented languages and therefore propositional logic must
be used to supplement UML in order to handle the constraints that emerge from the use of a versioning
pattern [2]. Since the ontology has been abstracted from a description-driven system, it must cater for
the set of design patterns that underpin multi-layer systems, including homomorphism, versioning,
complex graph, complex tree patterns etc. Figure 7 shows a summary of the design patterns that emerge
from a study of description-driven systems. The dependencies between patterns are shown as arrows -
for example the versioned graph pattern uses the version, complex graph and publish/subscribe pattern

odel and
tween
 through

. Foote
cription.
d their

schemae
e field
ns and
cation.

omain
. While
ility to
arable
(see [2]) - and there are constraints between these patterns (e.g. between the versioned graph, complex
tree and item description patterns), as shown by the note in Figure 7. These constraints must be
represented in and satisfied by the ontological representation, which, as stated above requires additional
semantics to that provided by object-orientation.

Conclusions

In the CRISTAL project meta-models are used to provide self-description for data and to provide the
mechanisms necessary for developing a meta-query facility to navigate multiple data models. Using
meta-queries, data can be extracted from multiple databases and presented in user-defined viewpoints.
The object models are described using UML which itself can be described by the OMG Meta Object
Facility [10] and is the candidate choice by OMG for describing all business models. The CMS
meta-model of Figure 4 acts as a repository of knowledge against which meta-queries are issued to locate
and extract data across multiple databases. Agent processes are used to ‘look into’ the meta-m
extract data from a user-specified viewpoint and to ‘look out’ from the model to correlate effects be
viewpoints. The overall effect is to produce an integrated set of cooperating databases accessed
a meta-query facility.

Work in the area of design patterns [3] is directly relevant to the ideas expounded in this paper
and Yoder [11] have applied the concepts of pattern representations to the domain of data des
They conclude that candidate patterns are required to describe meta-data structures an
inter-relationships. Design patterns are thus needed in object-oriented design to describe meta-
such as CRISTAL meta-objects. Similar conclusions are being drawn by Riehle & Gross [12] in th
of design frameworks, where the framework behaviour is driven by repository-based descriptio
where descriptions of an organisation’s business operation is separated from the business appli

In conclusion, This paper has proposed that an ontology, which is rich enough to support multi-d
access from multi-purpose agents, can be abstracted from a description-driven system design
UML provides sufficient expressive power to model software, certain restrictions, such as its inab
express formally constraints or functions, are serious impediments for the modeling of sh

Figure 7: Description-driven system pattern summary.

V ersion patt ern Compl ex Graph
pattern

Com plex Tree
pattern

Item Des c ript ion
pattern

E nric hed Hom om orphis m
pattern

P ublis h/S ubs c ribe
p att ern

V ers ioned G raph
patt ern

M ediator
pattern

The Tree of Item s i s
generated from m any
vers ion s of t he
Des c ri ption G raph.

mous

MG

le

tures".

oint

In

 Doc

98)
knowledge. UML as a language is therefore insufficient to provide sufficient semantics for agents to be
able to access knowledge in the ontology and mechanisms such as propositional logic must be used
alongside UML. Together UML and propositional logic provide the expressive power required for agents
to exploit the ontology. Such an approach could reasonably be applied to organisations developing
technologies for ‘virtual enterprises’ (such as in [13] and [14]) where collections of autono
databases could be related via a central enterprise meta-model.

References

[1] W. Schulze, C. Bussler & K. Meyer-Wegener., "Standardising on Workflow Management - The O
Workflow Management Facility". ACM SIGGROUP Bulletin Vol 19 (3) April 1998.

[2] Kovacs, Z., “The Integration of Product Data with Workflow Management Systems through a
Common Data Model”. PhD thesis, University of the West of England, 1999.

[3] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., "Design Patterns - Elements of Reusab
Object-Oriented Software". Addison-Wesley Longman Publishers, 1995.

[4] The CMS Collaboration, CMS Technical Proposal. January 1995. Available from ftp://
cmsdoc.cern.ch/TPref/TP.html

[5] Estrella, F. et al., "The Design of an Engineering Data Warehouse Based on Meta-Object Struc
Proc. of the Data Warehouse & Data Mining workshop at ER’98. Singapore, November 1998.

[6] Baker, N. et al., "An Object Model for Product and Workflow Data Management". Proc. Workshop
at the 9th Int. Conference on Database & Expert System Applications. Vienna, Austria August 1998.

[7] Blaha, M., and Premerlani, W., "Object-Oriented Modeling and Design for Database Applications".
Prentice Hall Publishers, 1998.

[8] Leone, N., Rullo, P., and Scarcello, F. 1997. “Disjunctive stable models: Unfounded sets, fixp
semantics and computation”. Information and Computation, 135(2):69-112.

[9] Bihlmeyer, R., Faber, W., Koch, C., Leone, N., Mateis, C., and Pfeifer, G. “dlv - an overview”.
Proceedings of the 13th Workshop on Logic Programming (WLP ’98), October 1998.

[10] Object Management Group Publications, Common Facilities RFP-5 Meta-Object Facility TC
cf/96-02-01 R2, Evaluation Report TC Doc cf/97-04-02 & TC Doc ad/97-08-14 .

[11] Foote, B., and Yoder, J., "Metadata and Active Object-Models". Proc. of the Int. Conference on
Pattern Languages Of Programs, Monticello, Illinois, USA, August 1998.

[12] Riehle, D., and Gross, T.,"Role Model Based Framework Design and Integration". Proc of the 1998
Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’,
pp.117-133. ACM Press, 1998.

[13] Gaines, B., Norrie, D., and Lapsley, A., "An Intelligent Information System Supporting the Virtual
Manufacturing Enterprise". Proc of the IEEE Int. Conferencs on Systems, Man & Cybernetics,
Vancouver, Canada. October 1995.

[14] Hardwick, M., Spooner, D., Rando, T., and Morris, K., "Sharing Manufacturing Information in
Virtual Enterprises", Communications of the ACM 39(2):46-54, 1996.

	Patterns for Multi-Layered System Architectures
	Abstract

	Description-Driven Systems and Multi-Layer Architectures
	The CRISTAL Project
	Accessing Data from Multiple Views
	The Need for Further Abstraction
	Towards an Ontology of Description-Driven Systems
	Conclusions
	References

