Reifying Interfaces in Smalltalk

Benny Sadeh

Independent Consultant

Sadehb@ix.netcom.com

Abstract

In Smalltalk, interfaces are not first-class objects. SmallInterfaces is a package that reifies the interface concept, expands its semantics by defining a new ontology of interfaces, and adds it as an honorary member to the Smalltalk’s reflection mechanism.

Introduction

I find the abstraction level brought by interfaces extremely useful. Designing and programming using interfaces is the one thing which lingered with me from my Java experience and which I wanted to carry over to cross-pollinate my Smalltalk experience. 

Though the notion of interfaces exists in Smalltalk, interfaces are not first-class objects in Smalltalk (so far :-). But that is exactly where they become so useful - as honorary members of the reflection mechanism.

Fortunately, Smalltalk being as open and reflective as it is, there was no reason why interfaces could not be reified in Smalltalk, and I have done that in a package I call SmallInterfaces.

Porting a concept from one domain to another presents an opportunity for redefinition; constraints that existed in the source domain might annul themselves in the target domain. The mere transformation might raise possibilities that did not exist in the source domain.

SmallInterfaces defines a new ontology of interfaces for Smalltalk that is quite different from the one defined in Java.

1. Why should you bother with Interfaces?

In the realm of domain analysis, the use of roles (also known as facets) has emerged as an important technique for classifying the features of objects. Roles reflect the various aspects of the object they describe, and the different roles that an object may play in relationship to other objects. More so, the assignment of responsibilities to an object depends on the role(s) it plays in a system of objects. 

Roles serve as an increasingly important metaphor for communicating object-oriented software designs and recognition of their importance has grown in recent years. For example, the codification of object-oriented software design knowledge in design patterns is founded in part on the metaphor of roles. Software design patterns describe reusable collaborations between design elements. Each design element plays an identifiable role with well-defined responsibilities.

Now, a design process and a programming language work well together when there is support and clean translation from the design process conceptual units to the programming language abstraction and composition mechanisms. An interface is the programming language mechanism that maps the design process role concept. 

The mental process that leads us from design to implementation can be summarized as: Responsibilities beget Roles, Roles beget Interfaces, and Interfaces beget Objects.

So interfaces are a very basic mechanism for thinking in terms of objects; they both define and organize the services objects provide. This is why designing good interfaces for objects become such an important endeavor when building applications using objects. 

2. What is an Interface?

An interface is an abstract type, unlike class, which is a concrete type. An interface specifies a set of messages that an object of any class implementing it would respond to. Therefore, it is orthogonal to class, which propagates the implementation of a message to its instances. 

Said differently, an interface specifies which messages an object will execute but it has no method implementations for those messages, where a class specifies how those messages will be executed by specifying method implementations for those messages.

Each interface specifies a set of messages, which together constitutes its repertoire. In turn, each message declaration specifies the message's name, and its arguments. For various languages, specifying the arguments for a message can mean different things, and there are many opinions and debates with regard to this issue.

3. Interfaces and Smalltalk

Interfaces are not about static typing. In principle, they are merely about typing. More specifically, they can be used to solely specify a behavior, detached from data.

The concept of interfaces is central to object-oriented methodologies. It is commonly referred to as Type. The interface of an object is determined by the set of all message sends that an object can respond to. It is therefore orthogonal to the concept of a class that propagates the implementation of a message to its instances. In other words, an interface specifies which messages an object will execute, where a class specifies how those messages will be executed.

Some OO languages have Interface and Class as two distinct concepts. For example, Java reifies both to some extent and includes syntax for defining and implementing interfaces, while Microsoft COM and OMG CORBA both have their own software object interface definition languages (IDLs).

In Smalltalk however, the interfaces of an object are implicit and folded into its class implementation. This is not to say that interfaces in Smalltalk can not be harvested and become tangible, first-class objects. On the contrary, this is exactly what SmallInterfaces set to achieve - the reification of interfaces in Smalltalk.

For a dynamically typed language like Smalltalk it is sufficient for a message declaration to specify (implicitly) the number of arguments. That is what SmallInterfaces does. However, another scheme could be chosen where the input arguments would be specified together with their order, type, and associated constraints. It would make sense then to specify the return value as well.

Because of Smalltalk’s dynamic nature, the relationships between classes and interfaces as well as the relationships among interfaces posses a dynamic nature. This is to say that the web of relationships is always inferred from the actual composition of classes and interfaces in a given universe, in a given moment. Thus, there is a causal connection between classes and interfaces; when a class or an interface is added/changed/removed to/from an environment, all relevant interfaces and classes are immediately affected by the event. 

4. An Ontology of Interfaces for Smalltalk

SmallInterfaces defines a new ontology of interfaces for Smalltalk that is quite different from the one defined in Java. Following are some highlights.

a) Each interface specifies a set of messages, which together constitutes its Repertoire.

b) Repertoires are not mutually exclusive; a message can be part of many repertoires.

c) Interfaces come in heterarchies, so that one interface can be declared as being a composite of other interfaces. A composite interface is one that extends other interfaces; it inherits message declarations from its extended interfaces, and may add additional declarations of its own. Such interface is also referred to as an extending interface. These interface classifications are not mutually exclusive; an interface can be extended and extending at the same time.

d) At the top of the heterarchy are root interfaces, which are parentless interfaces; they extend no other interfaces. At the bottom of the heterarchy are the leaf interfaces, which are childless interfaces; no other interface extends them. These interface classifications are not mutually exclusive. Consider the case where an environment contains a single interface; that singleton interface is both a root and a leaf at the same time.

e) An interface with no repertoire is referred to as an empty interface, and is considered to be an illegitimate interface. So using interfaces as a tagging mechanism is not facilitated.

f) Within a particular universe (such as the image), interfaces forms a-cyclical directed graphs that are not necessarily connected.

g) A class is considered an understander of an interface if it can respond to all messages of the interface's repertoire. A class can understand many interfaces, and an interface can be understood by many classes.

h) A class is considered an implementor of an interface if it itself implements the entire interface's repertoire. Thus, being an implementor implies being an understander. A class can implement many interfaces, and an interface can be implemented by many classes.

i) A class' repertoire is considered to be its instance side repertoire only. Though metaclasses can implement/understand interfaces as well (thus the class and metaclass sides can be considered as two distinct interfaces), this is not yet facilitated in SmallInterfaces.

5. What can you do with SmallInterfaces?

SmallInterfaces facilitates a whole slew of interactions between classes, interfaces, and objects. Following are some highlights.

Declaring an interface and specify its behavior. 

This can be done in three distinct ways.

- Directly, by specifying its name and selectors:

Interface 

newNamed: aSymbol 

withSelectors: selectors

- By composing from other interfaces:

Interface 

newNamed: aSymbol 

extending: stringOfInterfaces 

additionalSelectors: selectors

- By converting a class as a template:

Interface 

newNamed: aSymbol 

from: aClass

aClass asInterface

aClass asInterfaceNamed: aSymbol

Declaring a class as implementing one or more interfaces. 

This can be done in two distinct ways:

- Directly, by using one of the #subclass:*interfaces: messages such as: 

aClass 

subclass: className



instanceVariableNames: stringOfInstVars



classVariableNames: stringOfClassVars



poolDictionaries: stringOfPoolNames



interfaces: stringOfInterfaces

- By converting an interface to a class:

anInterface asClass

anInterface asClassNamed: aSymbol 

anInterface 

asClassNamed: aSymbol 

super: aClass

Given a class, you can ask: 

- What interfaces does it implement?

aClass implementedInterfaces

aClass implementedInterfacesMinimalSet

aClass implements: anInterface

- What interfaces does it understand?

aClass understoodInterfaces

aClass understoodInterfacesMinimalSet

aClass understands: anInterface

- What messages does it implement?

aClass repertoireImplemented

- What messages does it understand?

aClass repertoire

Given an interface, you can ask: 

- Which classes understand it? 

anInterface understanders 

- Which classes implement it?

anInterface implementors

- Which interfaces extend it? 

anInterface children

anInterface descendants

anInterface extendingInterfaces

- Which interfaces it is extending?

anInterface ancestors

anInterface parents

anInterface extendedInterfaces

Given an object, you can reflect about its type: 
anObject isTypeOf: aClassOrInterface
anObject conformsTo: anInterface

SmallInterfaces is a freeware. The current version is 1.5.0, and it is ported to the following Smalltalk dialects: 

· VisualWorks

· VisualAge

· Squeak

· GemStone

For further details, contact the author.
