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1 Introduction

One of the problems with current workflow systems is their limited support for dynamic environments
and evolving product and process models. A 1997 study of trends in workflow management concluded
that exception handling (i.e., dynamically modifiable processes) and object-oriented views of workflow
definitions deserve “serious attention” from researchers [Moh98]. But why are dynamic models so important
for adaptive workflow?

In [HC93], Hammer and Champy identify three factors that characterize modern businesses: (i) cus-
tomers take charge, (ii) intense competition, and (iii) constant change. In workflow terms, customers in
charge means support for ad-hoc processes. Constant change translates into dynamic process models. In a
world of intense competition where “nothing is permanent except change itself” [Cha96], support for ad-hoc
processes and dynamic process models are requirements for a succcessful business.

Scientists and engineers who work in computerized environments use “scientific” workflow systems.
They also require flexible models for process definition and execution [BBG+98]. The outcomes of scientific
processes evolve as the experiment unfolds. It is difficult to determine in advance the structure of the entire
process. Scientific workflow systems must allow workflows and product data to evolve at runtime.

2 Dynamic Object Models for Changing Environments

Computer scientists have long recognized the importance of adaptive, dynamic systems. Winograd and
Flores identify two clear objectives for software design: anticipating the forms of breakdown and providing
a space of possibilities for action when they occur [WF86]. Their ideas also provided the catalyst for the use
of computers to manage and coordinate activities.

The object-oriented community is trying to provide solutions to the challenges associated with building
software for dynamic environments. In the remider of this section we introduce one of these solutions, the
Dynamic Object Model [Joh]—also known as Active Object Model or User Defined Product.

Most object-oriented systems employ a static object model. The system architect defines the object
model during the design stage and then programmers translate it into code. A static object model is fixed
and doesn’t change at runtime. In contrast, the Dynamic Object Model (DOM) architecture stores its object
model in configuration data and interprets it at runtime. Changing the object model will immediately result
in a change in behavior. Since the object model is represented as data, it is usually easy to change.

�Additional information about this research is available on the Web at http://www.uiuc.edu/ph/www/manolesc/Workflow/
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DOMs strive to represent knowledge about a domain as relationships between the objects that model the
domain. They avoid hard-coding this knowledge into the code, since usually code can’t change at runtime.
Even when it does, the people who can perform these changes are a scarce resource. One of the fundamental
ideas of this architectural style lies in the ability to configure and manipulate its objects as any kind of data.

DOMs usually emerge from mature domain-specific frameworks. As developers evolve a framework
from white-box to black-box [RJ97], they gain a better understanding of the domain. This enables them
to recognize the “hot spots” of the design—the parts that are likely to change. Next, developers factor out
these parts into configuration data. What’s left is a generic system that interprets the configuration data at
runtime. Changing the behavior doesn’t require code changes any longer.

This approach yields a dynamically modifiable system, where the data contains the configuration in-
formation. Users can modify the system without programming and can defer configuration decisions until
runtime. DOMs expose only those aspects of the problem domain that they need to change.

However, these characteristics have their price. This style is complex and systems that use it are usually
developed by a small group of highly experienced developers. Although this architectural style enables a
small team develop complex applications, it usually takes them a long time to develop the framework, and
less experienced developers find the applications harder to debug, maintain, and understand. Additionally,
when you let users modify the system, you also have to deal with their mistakes. For this reason, DOM
applications require user support tools.

The DOM architectural style has been successful in domains where the business rules change often.
It works best with intellectual (abstract) products. We have studied this type of architecture in the insur-
ance framework at the Hartford [OJ98], the Objectiva telephone billing system [AJ98] and the Argo school
administration system in Belgium [DT98].

Manufacturing concrete products also changes, but not quite as often. For example, automobile makers
release new models every year. Manufacturing can benefit from DOM, but the benefit might not be worth
the cost.

3 The Structure of the Dynamic Object Model

A few key ideas form the foundation of a Dynamic Object Model architecture. These ideas have been
studied and documented as design patterns [GHJV95] (printed in slanted fonts throughout this document).

The most important is Type Object [JW97], which separates an Entity from an EntityType. Entities
have Properties and Type Object is used a second time to separate Property from PropertyType. Strategy
objects [GHJV95] define the behavior of an EntityType.

A few other patterns provide the support for Dynamic Object Model architectures. Metadata [FY98]
supplies the mechanism that allows the architecture to represent the knowledge about the domain as config-
uration information. Visual Builder [RJ97] provides a means for the now-empowered users to interact with
the object model.

3.1 Properties

Objects encapsulate state and behavior. State corresponds to attributes which are usually implemented with
instance variables. Changing the instance variables of an object requires changing its code.

A dynamically modifiable object model needs a scheme that does not require code changes. We want a
way to add or remove attributes on the fly. The solution is to implement attributes in a different way. Instead
of having an instance variable for each attribute, the Property pattern uses an instance variable that holds a
collection of attributes. Each attribute is associated with a unique key. Users use these keys to access, alter,
modify or remove attributes at runtime.
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For example, consider a workflow system for leasing real estate properties [DGSZ94]. The system au-
tomates the creation of lease contracts. Creating a contract begins with the production of a set of documents
that will be assembled into the final lease contract. This is followed by a series of legal and economic
checks. If the checks succeed, the system generates a lease contract. The workflow system has different
leasing processes depending on the type of the lessee. For private individuals, the legal check consists of
contacting the previous lessor and the economic check requires a bank statement. In contrast, commercial
institutions have different checks.

The leasing processes have attributes that store the starting date, the name of the person who entered
the initial data, etc. A possible implementation is to use instance variables for all these types of informa-
tion. For a DOM we use the Property pattern to represent the attributes. With this solution, all process
instances replace their instance variables with a single variable that stores their properties. Figure 1 shows
the UML [FS97] class diagrams corresponding to the two implementations.

LeasingProcess

+legalCheck()
+economicCheck()

-startingDate : Date
-person : String

PrivateLease

+legalCheck()
+economicCheck()

CommercialLease

+legalCheck()
+economicCheck()

LeasingProcess

+legalCheck()
+economicCheck()
+put(key : String, value : Object) : Object
+get(key : String) : Object

-properties : Hashtable

PrivateLease

+legalCheck()
+economicCheck()

CommercialLease

+legalCheck()
+economicCheck()

Figure 1: Converting from static to dynamic attributes—class diagrams. The left diagram shows the at-
tributes implemented with instance variables, while the right diagram uses the Property pattern.

The Property pattern makes it possible to change attributes without code changes. Users can now access,
modify, but also add and remove attributes at runtime. For example, let’s assume that the real estate agent
opens multiple branches. Each process requires now an additional attribute that stores the name of the
branch where it was started. How can the system accommodate the change? This will be quite a production
for a system that uses instance variables. First, end users cannot make the change. They have to rely on a
programmer who is familiar with the code. Second, after making the change, the programmer will have to
re-deploy the new system. This will probably require the import of any processes that were running on the
old system. With Property, this change doesn’t require a programmer. Users can add the extra attribute at
runtime, without stopping the system.

3.2 Strategy

In an object-oriented programming language, methods or virtual functions define the behavior of objects.
Programmers define an object’s methods by writing code. Along with state, these methods are part of the
features that make objects so powerful. However, most languages do not allow objects to control their own
methods.
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LeasingProcess

+legalCheck()
+economicCheck()
+put(key : String, value : Object) : Object
+get(key : String) : Object
+setLegalCheckStrategy(aLegalCheckStrategy : LegalCheckStrategy)
+setEconomicCheckStrategy(anEconomicCheckStrategy : EconomicCheckStrategy)

-properties : Hashtable
-legalCheckStrategy : LegalCheckStrategy
-economicCheckStrategy : EconomicCheckStrategy

PrivateLease CommercialLease

LegalCheckStrategy

+executeLegalCheck()

EconomicCheckStrategy

+executeEconomicCheck()

1

1

1

1 1

1

1

1

Figure 2: The application of the Strategy pattern to the leasing process workflow—class diagram.

Although this scheme usually works very well, it is not sufficient for a dynamically modifiable object
model. We want to be able to control an object’s behavior. We need to represent behavior with a user-level
mechanism. A Strategy is the reification of behavior into objects. The Strategy pattern defines a standard
interface for a family of algorithms. Clients can work with any algorithm of a given family. If an object’s
behavior is defined by one or more strategies then that behavior is easy to change.

For example, in the leasing real estate workflow, the legal and economic checks are part of the behavior.
In a static object model, the typical implementation is to have a method for each of these operations. The
alternative is to have a Strategy family for every type of check, LegalCheck and EconomicCheck. With this
solution, users can configure the type of checks for each kind of process. Figure 2 shows the UML class dia-
gram from Figure 1 (right) after we applied the Strategy pattern. The legalCheck() and economicCheck()
methods in the base class delegate to the corresponding Strategy objects.

What happens if the agency wants to adopt a set of different legal checks for commercial institutions?
For a system that implements this behavior in methods, this change requires code modifications and the
re-deployment of the entire system. In contrast, with a DOM architecture, the user just plugs in a different
LegalCheckStrategy object.

3.3 Type object

The majority of object-oriented languages structure a program as a set of classes. A class defines the struc-
ture and behavior of objects. Most object-oriented systems use a separate class for each kind of object.
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Introducing a new kind of object requires making a new class, which requires programming. When there is
little difference between objects, they can be generalized and the difference described by parameters.

So far the implementation of the real estate leasing process has a different subclass for each kind of
leasing process, e.g., PrivateLease and CommercialLease. However, the only differences between these
subclasses are their Property and Strategy configurations (see Figure 2). Further, the same person can have
two contracts, one as a private individual, and one as a commercial entity. A lessee object needs to refer to
its leasing processes. Some languages (e.g., C++) make it hard to have an object point to a class or to create
an object from a class with a particular name. The alternative is to have a LeaseType object corresponding
to all the leasing processes. A LeaseProcess will have a reference to a particular LeaseType. With this
solution, it is no longer necessary to make a separate class for each kind of leasing process. Make a class
LeaseType and create instances of LeaseType instead of subclasses of Lease. Figure 3 shows how the
application of Type Object modifies the diagram from Figure 2.

LeaseProcess

+legalCheck()
+economicCheck()
+put(key : String, value : Object) : Object
+get(key : String) : Object
+setLegalCheckStrategy(aLegalCheckStrategy : LegalCheckStrategy)
+setEconomicCheckStrategy(anEconomicCheckStrategy : EconomicCheckStrategy)

-type : LeaseType
-properties : Hashtable
-legalCheckStrategy : LegalCheckStrategy
-economicCheckStrategy : EconomicCheckStrategy

LegalCheckStrategy

+executeLegalCheck()

EconomicCheckStrategy

+executeEconomicCheck()

LeaseType

-propertyTypes : Hashtable
-legalCheckStrategies : Hashtable
-economicCheckStrategies : Hashtable

1
1

1

1

1 1

Figure 3: The application of the Type Object pattern to the leasing process workflow—class diagram.

The Type Object pattern makes the class-instance classification relationship explicit. Instances of
the type class (LeaseType in our example) replace subclasses of the original class (PrivateLease and
CommercialLease). Users have full control over this relationship. They can even modify it at runtime.
For example, what happens when the type of lease changes while the process is executing? A person may
decide that she would like to move her business office in the apartment that she applied for as a private
individual. Some languages permit the class of an object to change (e.g., Smalltalk), but most do not. With
Type Object, the classification relationship is at the user level and can be dynamically modified. Of course,
simply changing the process type is not enough—we also need to convert the attributes. However, now the
user controls the state, behavior, and classification relationship.

The core of a DOM architecture is a combination of Type Object, Property and Strategy. Figure 4
shows the corresponding UML class diagram. The Type Object pattern divides the system into Entities
and EntityTypes. Entities have Attributes, each of which has an AttributeType. Each EntityType
specifies the AttributeTypes of its Entities. The EntityType also holds a set of Strategy objects as
Properties.
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EntityType AttributeType

Entity

-type : EntityType

Attribute

-type : AttributeType

Strategy
0..nProperty

0..nProperty

1..1

1..1

Type Object

1..1

1..1

Type Object

0..n Property

Knowledge level

Operational level

Figure 4: The core of the Dynamic Object Model architecture—class diagram.

3.4 Metadata

Type Object, Property and Strategy are the building blocks of the architecture. DOMs represent the reminder
of the object model as configuration data, or Metadata. Therefore, modifications of the configuration data
change the object model. In turn, changing the object model alters the system behavior.

Two factors contribute to the extended flexibility of DOM architectures. First, only the generic part
is hardwired. Types, entities, attributes and algorithms are universal concepts. Therefore, this core is the
same for a wide range of problems and we don’t need to change it. Second, the variable part is pushed into
Metadata. Users have full control and modify it to adapt the object model to their needs.

However, abstracting the generic parts and identifying the parts that are likely to change requires expe-
rienced architects. Usually they achieve this insight only after a few iterations. This is one of the reasons
that make DOMs hard to build.

Let’s return to the real estate workflow example. How does the leasing process obtain the information
about its attributes? A possible implementation is to have code that performs this initialization. However,
this requires programming. Our goal is to avoid code changes. Further, now Property allows users to
dynamically add or remove attributes without touching the code. Likewise, Strategy represents behavior
with objects. We need a different mechanism. The alternative is to describe the types, their attributes and
behavior in Metadata. When bootstrapped, the system reads this information from a repository and initializes
the process types.

3.5 Visual builder

One of the main reasons to build a DOM is to extend the system without programming. Users have direct
access to the object model. They control the relationships between its core components and the Metadata
information.

DOM architectures push complexity into the configuration data and delegate configuration decisions to
the users. We can think of metadata as a domain specific language. Users become specialized programmers.
The key here is to expose only those concepts and rules that they need to operate with, in a way that they
could understand. Non-programmers are likely to use a specialized programming language if it is in the
guise of Visual Builders.
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Let’s return one more time to the leasing process workflow. We have discussed how we employ Strategy
objects to encapsulate different types of LegalChecks and EconomicChecks. Users use a Visual Builder
to configure the types of checks for each leasing process. They perceive this as picking an item from a list
and dropping it on a process configuration window. Within the DOM architecture, this action translates into
plugging a Strategy object into the type side of a Type Object. However, the builder hides all these details
from the user.

4 An Object-Oriented Workflow Model

Workflow systems amalgamate technologies, principles and methodologies from numerous areas of com-
puter science. Consequently, they are hard to build. Support for modifiable process models and dynamic
environments makes their construction even more challenging. For example, OMG’s Request for Proposals
for the Workflow Management Facility [OMG97] lists ad-hoc workflow (i.e., where the process is not well-
defined in advance) as an optional requirement. This shows that the community is aware of the difficulties
and is seeking solutions. According to [Moh98], only a few commercial systems allow their users to modify
executing workflows, e.g., InConcert and TeamWARE Flow.

The typical workflow system architecture consists of three components [Hol95, AAAM97, Sch96].
Build-time functions provide support for process definition and modeling. Run-time control manage pro-
cess execution and their associated resources. Finally, run-time interaction functions provide the interfaces
to human users and IT application tools. Usually, a workflow engine integrates both run-time control and
interaction functions.

The workflow engine handles process enactment. This consists of reading process definitions; creating
new process instances; and scheduling the various steps within the process and the appropriate resources.
For adaptive workflow, we should be able to change the process definition while the process is running. We
should also have a way to change a particular process instance.

When engineers approach a new problem, sometimes they translate it into an equivalent problem for
which they already have a solution. We apply a similar strategy for adaptive workflow. We look at workflow
through the lens of object-oriented technology. Since we are familiar with DOMs in the context of flexible
object-oriented systems, we’d like to use the same architectural style and techniques for adaptive workflow
and modifiable process models.

We first need an object model for workflow. To date, a standard model is not yet available. The OMG
is in the process of adopting one as part of its Workflow Management Facility. We present a critique of the
Nortel and jFlow proposals in [MJ].

Looking at process enactment from an object-oriented standpoint, we see a familiar image. Creating
process instances from a process definition is similar to creating instances of a class. This similarity is
the crux of our framework. Having established a correspondence between the workflow domain and the
object-oriented domain, we’re on a well trodden path.

5 A Workflow Framework

We represent workflow with “procedures.” Procedures form the glue that connects together domain objects.
They encapsulate control flow and, indirectly, data flow. The procedure system provides a framework for
workflow management. Carefully designed, such a framework is reusable across different domains.

Most applications consist of domain objects and glue code that links them together. It takes a while to
get domain objects right, but they don’t change a whole lot afterwards. (This doesn’t mean that they don’t
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change at all.) In contrast, the glue code changes quite frequently. Many “new” products consist of the same
“old” domain objects wired in a different way.

For example, an insurance company may pay claims for auto insurance that total less than a certain
amount without examining each claim individually. The company would require the client to use the services
of selected repair shops with which it has agreements. This decision saves the company the costs of auditing
each claim. The reduced turnaround time also keeps clients happy. However, to prevent fraud, auditing
personnel selects claims that appear suspicious and checks whether the repair shop is overcharging. This
strategy doesn’t require new domain objects. However, the auditors must be able to change the processing
rules for individual process instances. Therefore, it makes sense to invest into a workflow framework. First,
the framework will help reuse existing domain objects better. Second, it doesn’t tie you to a particular
domain. Should you want to use different domain objects, the workflow problems are still there.

We implement procedures on top of a Domain Model Engine (DME). This is a specialized object-
oriented language for process and product models [MJ98]. The DME resides above the hardware and the
system software. It provides the core of the DOM architecture described in Section 3.3.

5.1 Procedures as types

Applying the analogy between workflow and object systems, we regard procedures as types/classes.
Procedure types in the knowledge level govern the configuration of procedure objects in the operational
level [Fow97].

Here we use the Type Object pattern. The procedure definition resides on the type side. During the
bootstrap stage, the DME initializes the definitions from metadata. At runtime, the DME builds the object
model starting from these definitions.

We use the following basic types of procedures in the knowledge level:

Primitive corresponds to a single action on a domain object.

Sequence represents a Composite procedure. It has a number of steps, each of which is another procedure.

Conditional implements if-then branches .

Iterative iterates over the components of Composite domain objects (described as “composite work items”
in [CJ98]). This procedure type doesn’t make any contribution to control flow. We use it as an
additional structure that helps us to keep the control logic outside domain objects. For example, a
portfolio may contain different kinds of assets. Let’s assume that we want a procedure that computes
some function on this portfolio—e.g., its projected value, which consists of the values of its compo-
nents plus the interest. The procedure needs each component of the portfolio, since different assets
have different rules. The Iterative procedure first obtains the components of the portfolio and then
executes the procedure that computes the value on each of them.

Parallel executes its procedure components simultaneously.

The implementation of a process consists of a combination of procedure types, organized in a tree
structure. To perform a process, we execute the procedure at the root of the corresponding procedure tree.
In turn, this will execute its children, and so forth. A regular (i.e., not dynamically modified) process ends
when the control returns back to the root node. Figure 5 shows the UML instance diagram corresponding to
the leasing process from Section 3.

We usually employ the Composite design pattern to implement tree structures. For adaptive workflow we
want to be able to dynamically change the type of a procedure. (Section 6.2 has an example.) The catalog
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aSequence

aParallel
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aConditional

aPrimitive aPrimitive aPrimitive aPrimitive aPrimitive aPrimitive

aSequence
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document

Lessor
document

Select
house-unity

Legal
check

Economic
check

Create
final document

Figure 5: The definition of a process corresponds to a tree of ProcedureType objects—instance diagram.

form of the Composite pattern [GHJV95] uses separate classes for node and leaf elements. To provide
maximum runtime flexibility, we don’t want to commit a procedure type to a particular class. Therefore, we
employ a variant that doesn’t use a classification relationship. Leaves can now change into composites and
vice versa.

In programming languages, a component closely related to data types is the type system. Strongly-typed
languages like C++ or Java perform type checking. The compiler analyzes and checks the function or method
signatures at compile time and guarantees them at runtime. Although far from proving program correctness,
this type checking is one reason why some users prefer strongly-typed languages for mission-critical appli-
cations. Since the workflow framework also employs types, what is the equivalent of type checking? Here
we can benefit from another consequence of the Type Object pattern. Besides the classification relationship,
Type Object also brings the type checking mechanism at the user level. In other words, we can define the
rules that determine the valid combinations of procedure type objects. Moreover, unlike for programming
languages, these rules are not fixed any longer. They can evolve with the rest of the system. We’ll resume
this discussion in the next section.

5.2 Data flow

So far we have discussed how procedure types encapsulate basic control structures. What about the infor-
mation that procedures operate with?

Although usually workflow systems do not explicitly represent data flow, it is nevertheless an important
component. Many researchers identify the ability to pass data among the participants as one of the important
factors that determine the effectiveness of a workflow management system.

We extend our parallel between workflow management and object-oriented programming. In program-
ming languages, interpreters use closures or environments to capture values [FWH92]. For example, a func-
tion definition has a closure that stores the values of free variables. For each function call, the interpreter
plugs in the values of the bound variables and performs the computation.

We use a similar idea to supply inputs and collect outputs from procedures. Context objects serve
as vehicles for data flow between procedures. At runtime, each procedure executes within a context.
An executing procedure extracts its input parameters from the context. When execution completes, the
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procedure stores its results (if any) back in the context. The parent procedure passes the context to the next
procedure.

In adaptive workflow systems users can change the procedure types at runtime. We need context objects
that can change as well. For example, assume that a procedure type adds an extra parameter. DOMs
accommodate for this change without code modifications. The Payloads pattern [Man97] is a good candidate
for this type of situations.

Having explained how procedures exchange information, we are now ready to complete the discussion
of type checking. Procedure type checking rules work at the context level. Type checking ensures that
each procedure type finds in the context supplied by its parent all the attributes that it needs. The Visual
Builder uses the type information to assist users when they build new procedures. For example, when we
edit the component of the Conditional from Figure 5, the builder displays a list with all possible choices.
Initially, this list shows a Limited View [YB97] with only those procedures whose context requirements are
compatible with the parent. Although generally this scheme works well, it is too restrictive for adaptive
workflow.

5.3 Executing procedures

How do procedure types execute? Once again, we revisit the analogy between the workflow domain and the
object-oriented domain.

Procedure execution is similar to object instantiation. At runtime, the type side creates a procedure
object on the instance side and then transfers control to it. However, procedures only coordinate and connect
domain objects. These objects carry out the domain-specific processing. This symbiosis between procedures
and domain objects forms the application.

Execution begins with a client (an application or a procedure) requesting to execute a procedure type on
a particular domain object. The client transfers control to the procedure type, within the workflow domain.

The procedure definition on the type side acts like a factory of executing procedure objects. This creates
a new procedure instance with an empty context. Next the type side initializes the context of the new
instance.

Now the procedure instance is ready to execute. The procedure definition transfers control from the type
side to the instance side. We are still in the workflow domain, but have left the knowledge level.

At this point the procedure object triggers domain-specific work. It can’t perform this work by itself,
since procedures encapsulate only control logic. However, it can delegate to the domain object on which it
executes. Procedure instances transfer control across domain boundaries.

Procedure execution resumes when the domain object transfers control back to the procedure instance.
The context contains the results of the domain-specific processing. Finally, the procedure instance returns
its context to the client, which can be a parent procedure or an application.

The UML sequence diagram from Figure 6 shows the mechanics of procedure execution. This execution
model has several characteristics that support adaptive workflow. First, it keeps the control logic (workflow)
outside the domain objects (application). Changes on any side of the inter-domain boundary have a minimal
impact on the other side. Second, it maintains a clear separation between the type and instance levels within
the workflow domain. Users can make local changes (at the instance level) or structural changes (at the type
level). And finally, the context of the executing procedure determines the state of the system. Users can alter
a particular process instance by modifying its context.
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Figure 6: Procedure execution—sequence diagram.

6 Dynamic Object Model and Workflow Adaptation

We are now ready to see how the DOM workflow framework handles adaptive workflow. But what are the
key requirements for adaptive workflow management? First, we need a workflow model that supports evolu-
tion as well as ad-hoc modifications of process instances. Model evolution is essential for Business Process
Reengineering (BPR) and Continuous Process Improvement (CPI). Ad-hoc modifications allow users to ad-
just a particular process instance to specific circumstances. Second, we need a flexible infrastructure. The
underlying software systems must be able to keep up with the process changes.

For example, let’s consider the following common scenario from health care, adapted from [HSB98]. A
patient arrives at the hospital with a certain health problem. The physician performs an initial examination
and arrives at a diagnosis based on the observable symptoms and the patient’s medical history. She then
proceeds with the treatment corresponding to this first diagnosis. However, the physician also orders lab tests
to obtain more information about the patient’s health problem. When the test results arrive, the physician
may have to modify the treatment to take into account the additional information.

We’ll use this example to describe how the DOM workflow framework supports adaptive workflow. We
proceed from the highest to the lowest level of abstraction. We also look at an additional characteristic
supporting adaptive workflow, namely the convergence of build-time and run-time environments.

6.1 Domain level adaptation

We can think of software as having two dimensions. One corresponds to the application domain and contains
domain-specific logic. The other corresponds to control and data flow (i.e., workflow) and is domain-
independent.

Generally we use the same tool (usually a programming language) in both dimensions. This character-
istic encourages beginners to combine the two dimensions. Consequently, domain-specific code and control
logic are usually intertwined within applications. Inexperienced programmers see (and think in) a unidi-
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mensional problem space.
In contrast, workflow is a tool only for the control and data flow dimension. On the one hand, this

means that we have to think a little differently about software. Sometimes it may even seem awkward to
wear two hats, one for the application domain and one for the workflow domain. On the other hand, the
divided perspective pays off with additional flexibility. We can change on either dimension with minimal
consequences for the other.

Throughout Section 3 we used a process for leasing real estate properties. This Section begins with
a process for health care. From a workflow standpoint, the difference between these two examples is the
application domain. The leasing workflow focuses on contracts and various types of checks. In contrast,
the health care workflow concentrates on symptoms, tests and treatments. Aside from domain specific
processing, both workflows handle control and data flow. To facilitate domain level adaptation, application-
and workflow-specific processing should be loosely coupled. However, only experienced architects achieve
a good separation.

The procedure framework tries to maintain a reduced contact area between the application and workflow
domains. Control crosses the domain boundary only from the instance side in the workflow domain, at the
level of Procedure objects—see Figure 6. The Iterative procedure type helps us to keep the application
domain unspoiled from control logic. This reduced coupling means that changing the domain objects has a
low impact on procedures, and vice versa.

6.2 Process level adaptation

The workflow framework abstracts control flow in procedures. We use Type Object to separate the definition,
ProcedureType, from the running instance(s), Procedure. In Section 3.3 we discussed some of the general
consequences of Type Object in object-oriented design. For the workflow framework, this pattern separates
the issues of workflow evolution and those of dynamic ad-hoc changes:

� On the one hand, process owners can modify the ProcedureType, in the knowledge level. This
structural change affects all Procedure objects of the corresponding type. It is similar with the meta-
model mechanism for adaptive workflow used by systems like CRISTAL [BBG+98]). Modification
of the ProcedureType may have local or global temporal scope. Local changes affect the Procedure
objects instantiated after the changes become effective. For example, modifications to the enrollment
procedure for an insurance policy affect all policies issued after the new rules become effective. In
addition, global changes also affect the Procedures that are currently running. For the insurance
domain, changes in legislation are likely to have this effect.

In the health care example, let’s assume that the facility decides to offer its services only to patients
who have a certain coverage. An employee authorized to change the workflow definition edits the
corresponding ProcedureType with a Visual Builder. He selects a Conditional, adds a check and
updates the definition. Now every instance of this workflow performs the coverage check.

Figure 7 shows the UML instance diagrams corresponding to the original and updated process defi-
nitions. In the original process (left side), the root node contains a Sequence (“Diagnosis and Treat-
ment,” grayed) and a Primitive. In the updated process (right side), the process owner introduces a
Conditional procedure between the root node and the “Diagnosis” Sequence. This procedure checks
whether the patient has the required coverage. (In reality we’ll probably need more than just a Con-
ditional, but here we’d like to keep the definition simple.) The framework executes the “Diagnosis”
Sequence only when the guard within the Conditional node resolves to true.

� On the other hand, process users can change the Procedure instance, in the operational level. These

12



aSequence

aPrimitiveaSequence

aPrimitive aPrimitive

aSequence

aPrimitive

aSequence

aPrimitive aPrimitive

aConditional

Patient treatment Patient treatment

Check
Coverage

Diagnosis
and

Treatment
(Incomplete)

Knowledge level

Operational level

Figure 7: Changing the process definition—instance diagrams. The original (left) and the updated (right)
process definitions. To improve readability, we show only two components within the “Diagnosis and Treat-
ment” (grayed) Sequence.

changes have local scope and don’t affect other users. Open-point workflow systems like M OBI LE [JB96]
use a similar scheme.

Let’s return back to the health care example. What happens when the test results arrive? For instance,
they may reveal that the patient has acquired a new allergy. If this conflicts with the initial treatment,
the physician needs to change the prescription and avoid an allergic reaction. She edits the workflow
instance with the Visual Builder and replaces the steps to reflect the new information.

Figure 8 shows the UML instance diagrams corresponding to the original and updated running pro-
cesses. In the knowledge level (upper half), the process definition consists of a tree of procedure types.
Likewise, in the operational level (lower half), the process instance consists of Procedure objects.
Type Object associates each Procedure with a ProcedureType in the knowledge level. (To improve
readability, we show only one of these relationships.) As the process unfolds, the framework traverses
its definition and creates the corresponding Procedure objects in the operational level. (Procedure
objects exist only for the ProcedureTypes that have executed or are executing.) We show the cur-
rently executing procedure and its corresponding type in gray. The left figure corresponds to the initial
treatment. The process executes according to its definition, determined from the observable symptoms
and medical history. Now the lab tests arrive and reveal the new allergy. In the right figure, the physi-
cian makes a local change to the process instance. She changes the classification relationship from
the initial treatment (dark gray) to a new one (light gray), selected ad-hoc for this process instance.

The implementation of a process corresponds to its decomposition in terms of the basic procedure
types—see Figures 5, 7 and the upper half of Figure 8. Through this recursive decomposition (divide and
conquer), the procedure framework keeps complexity under control. Each process corresponds to a tree of
ProcedureType objects in the knowledge level. The Composite pattern maintains the same interface for
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Figure 8: Changing the process instance—instance diagram. The left side illustrates the process executing
according to its definition and the right side illustrates a local change. We show the currently executing
Procedures and their corresponding ProcedureTypes in gray.

node and leaf procedure types. In other words, sometimes we may want to implement a (sub-)process with
a single primitive procedure (leaf). But under different circumstances, we may want to use a composite
procedure (node) for the same (sub-)process. For example, this could be a Sequence with an additional
Conditional procedure. The UML diagram from Figure 9 illustrates this situation. The Primitive procedure
(grayed) is now part of the Sequence, which contains another Primitive and a Conditional. Since both so-
lutions have the same interface, the choice has minimal impact on the workflow framework. Further, we
can make these changes at runtime. This flexible composition supports process evolution as well as ad-hoc
modifications.

The procedure framework has another important characteristic for adaptive workflow. Let’s revisit the
mechanics of procedure execution—Figure 6. A client requests to execute a procedure type on a domain
object. The ProcedureType first creates a Procedure instance and then transfers control to it. The key
observation here is that the ProcedureType instantiates the Procedure at runtime, right before its activa-
tion. From an object-oriented perspective, we can think of this as a dynamic binding between a process and
various potential implementations. In other words, we don’t need the complete process specification at build
time. A procedure can complete its specification at runtime. Alternatively, the workflow system may ask the
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Figure 9: Replacing a Primitive procedure type (left) with a Sequence (right)—instance diagram.

user to choose one of the available choices. This dynamic refinement is key for handling processes with
incomplete specifications.

A typical workflow process involves various software and human resources. Sometimes these don’t
respond according to the process designers expectations. Computers can crash, networks can go down
and people can get sick and stay home one day. Further, while process designers plan ahead for some of
these events, usually they can’t envision every possible combination. Workflow systems employ exception
handlers to deal with unpredictable events. For adaptive workflow we need adaptive exception handlers.
At the framework level, we can implement exception handlers as procedure types. Users change the handlers
in the same way they change process definitions. At the architecture level, we can use Strategy objects.
Users manipulate and configure them with Visual Builders, as any other objects. However, we only provide
the mechanism for exception handlers. Their intelligent management is a better task for a different kind of
systems [KD98].

6.3 Resource level adaptation

The procedure framework employs the DOM mechanisms to track the evolution of workflow resource ob-
jects. Some resources never change. Procedures obtain the information about static resources from Meta-
data. However, in an adaptive workflow system resources are dynamic.

Back to the health care example, a resource may be a system that provides various information about the
patient, e.g., temperature, blood pressure, etc. The staff may retire the old system and introduce a new one,
with extended functionality. For instance, the new system could also read the blood sugar level. Even when
the staff doesn’t replace the system, they could upgrade its software and change the interface.

Under these circumstances, the framework obtains information about a resource through the mechanisms
provided at the DOM level. For example, it can query an EntityType to discover whether there are any
changes in the Attribute or Strategy configuration. Alternatively, the framework can use the reflective
capabilities of the resource object [VJK96, MKVlC98, EtH98]. However, we don’t cover reflection in this
version of the paper.

6.4 Infrastructure

Layered architectures [BMR+96] insulate each layer from changes on the underlying layers. For the work-
flow framework, the DME and the Common Services provide layers above the hardware and system soft-
ware. The diagram from Figure 10 shows the system architecture. Changes in the infrastructure are trans-
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parent to the procedure framework.

Hardware

System
Software

Common
Services

Domain
Modeling
Engine

DOM
Workflow

Framework

Figure 10: The layered architecture insulates the Workflow Framework from the System Software.

For example, the hospital may decide to replace the relational database used for persistence with an
object-oriented database. This change is visible only at the DME level. In contrast, the procedure framework
uses the mechanisms provided by the DME and consequently it doesn’t depend directly on the underlying
database. The procedure framework doesn’t provide direct support for changes at the infrastructure level.
This kind of adaptation is handled at the DME level.

6.5 Build-time and run-time environments

Many current workflow management systems keep apart the build-time tools and the run-time tools. For
example, in the workflow reference model [Hol95], Interface 1 defines a “point of separation” between the
build-time and run-time environments.

Based on the insights gained from applying workflow technology to real problems, researchers are in-
vestigating the relationship between build-time and run-time environments. Initially, separate environments
seemed reasonable. Recent findings advocate for an integrated environment, particularly for adaptive work-
flow.

Ouksel and Watson investigate the capabilities needed by workflow systems to accommodate adaptive
workflow [OJW98]. They identify the integration of build-time and run-time environments as an important
requirement. Chiu and Li [CKL98] also recognize the importance of an integrated environment for work-
flow evolution. In [GT98], Georgakopoulos and Tsalgatidou examine the relationship between workflow
management systems (WfMSs) and business process modeling tools (BPMTs). They conclude that their
integration is a requirement for comprehensive business process lifecycle management.

As we explained in Section 3.5, the DOM architecture integrates build-time and run-time functions
and facilitates user involvement. In the health care example, physicians interact with the object model
through Visual Builders. The build-time environment enables them to create new procedure types, in the
knowledge level. For instance, a new treatment for a disease may be discovered. Likewise, the run-time
environment handles procedure execution. Physicians customize a particular running process (procedure
instance) according to their needs.

We are familiar with the benefits of integrated build-time and run-time environments. Smalltalk, a
powerful object-oriented language, has one of the best programming environments. The development en-
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vironment is fully integrated with the run-time. A user can interrupt a running program, change the code
and resume execution. DOM applications share the same characteristics. The main difference stems from
the different audience. Smalltalk programmers want a full-featured programming language. In contrast,
workflow users (real estate agents, physicians, etc.) prefer to work within their domain.

7 Summary

This paper describes a framework for adaptive workflow systems. This framework is an example of a Dy-
namic Object Model, and process models in this framework are similar to object models in more traditional
systems. The framework is useful for systems using a Dynamic Object Model, because then workflow inte-
grates closely with the rest of the system, and is easy to implement. But the framework is useful in its own
right as a flexible workflow management system that makes it possible to change both process definitions
and processes.
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1998.

[HC93] Michael Hammer and James Campy. Reengineering the Corporation—A Manifesto for Business Revo-
lution. Harper Business, 1993.

[Hol95] David Hollingsworth. The Workflow Reference Model. Workflow Management Coalition, Avenue Marcel
Thiry 204, 1200 Brussels, Belgium, 1995. Available on the Web at http://www.aiim.org/wfmc/.

[HSB98] Yanbo Han, Amit Sheth, and Christoph Bussler. A taxonomy of adaptive workflow management. CSCW
Towards Adaptive Workflow Systems Workshop, Seattle, WA, November 1998. Available on the Web at
http://ccs.mit.edu/klein/cscw-ws.html.

[JB96] Stefan Jablonski and Christoph Bussler. Workflow Management—Modeling Concepts, Architecture and
Implementation. International Tompson Computer Press, 1996.

[Joh] Ralph E. Johnson. Dynamic object model. Work in progress; available on the Web at http://st-www.
cs.uiuc.edu/users/johnson/DOM.html.

[JW97] Ralph Johnson and Bobby Woolf. Type Object, chapter 4. In Martin et al. [MRB97], October 1997.

[KD98] Mark Klein and Chrysanthos Dellarocas. A knowledge-based approach to handling exceptions in work-
flow systems. CSCW Towards Adaptive Workflow Systems Workshop, Seattle, WA, November 1998.
Available on the Web at http://ccs.mit.edu/klein/cscw-ws.html.
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