OOPSLA’98

Designing Flexibility into a Telephony System

PLoP’98

Telephony Data Handling Pattern Language

Meta-data and Active Object Model Pattern Mining Workshop

OOPSLA '98 Workshop Submission

David E. DeLano
AG Communication Systems
delanod@agcs.com
2500 W. Utopia Rd.
Phoenix, AZ 85027
(602) 581-4679

Copyright (1998 AG Communication Systems Corporation. All rights reserved.

Permission is hereby granted to the OOPSLA '98 workshop on Meta-data and Active Object Model Pattern Mining Workshop to copy and distribute this document as part of the workshop documentation in both electronic and printed form.

Designing Flexibility into a Telephony System

One trend in the telecommunications industry is to add components into the network that modify the behavior of events through the system. These peripherals are known collectively as IN or Intelligent Network. Many new and changed features can be introduced into the telephony network without modifying the underlying architecture of telephone switches that has been in place for many years.

While developing one such IN peripheral, it was decided that a more flexible component architecture was needed to aid in the development of new features and to decrease the time that it took to develop them. A framework known as the Service Request Broker Architecture, or SeRBA, was developed. This framework has characteristics that can be exploited to develop a highly configurable system. No current product uses this capability, but with a few minor changes the capability exists.

The SeRBA framework is highly patterns based. The underlying architecture is the Broker. The framework also uses Proxy, Visitor, and Factory Method among other Design Patterns. Without including a multitude of UML diagrams, I'll attempt to describe the framework.

The basis of the framework is two classes: Transceiver and Parcel. The Parcel is the interface into a given Transceiver. A Transceiver performs a service for the system, and has the capability to send or receive a Parcel. Upon receiving a Parcel, the Transceiver generally performs an operation specified according to the type and contents of the Parcel.

There are several specialized Transceivers in the SeRBA framework. The RequestBroker is the Broker for the architecture. The RequestBroker has a Registrar where registration of services of Transceivers is recorded. Incoming messages are handled by a Receiver, which uses a Factory to turn the message stream into a Parcel. A Proxy reverses the process to send a Parcel to the outside world.

A simple scenario is that a Receiver takes a message from the incoming data stream, uses a Factory to create a Parcel, and routes the Parcel to the RequestBroker. The RequestBroker looks up the service provider via the Registrar, and routes the Parcel to the appropriate Transceiver. A Visitor, double dispatch, sequence is used to associate the Parcel with the correct service request in the Transceiver.

The underlying architecture of the SeRBA framework is ideally flexible, but in most implementations tends to be more rigid. In practice, two areas have not been exploited for flexibility. The first is the Transceiver/Parcel relationship. The second is the Registrar.

For every service that the system needs to perform, a Transceiver needs to implement the service and a Parcel needs to encapsulate the interface for the service. A Transceiver may be capable of receiving multiple Parcel types, but it must implement a separate service for each one. Intuitively, Transceivers should be single service oriented to allow more flexibility in designing a system. Thus, most system designs only call for a collection of Transceivers that implement the features in the design. There is some flexibility in that Transceivers developed for other systems may be reused with little modification. However, no scheme has been developed to add Transceiver/Parcel pairs at run time.

The current implementation of the Registrar is similarly inflexible. The current Registrar contains a table of services which is indexed by the requested service and returns a reference to the Transceiver which has registered to perform the service. Note, however, that this is a fixed table. Each Transceiver registers its services with the RequestBroker at run time. It is only the indexing of the table that is fixed, i.e., the services to be provided by the system are known at link time and are not changed at run time.

Ideally, a set of Transceivers should be developed that provide common services. These Transceivers (and their paired Parcels) could then be used to plug in to any system being developed. The Registrar should provide some sort of service to Transceiver translation storage that is dynamic. The system would still have to be linked with all possible service providing Transceivers, but they could register services dynamically. This would give the system more flexibility in the services it provides.

10/08/98
1
DED
10/08/98
2
DED
10/08/98
3
DED

