Experiences with Meta-Data Programming
Bobby Woolf

Experiences with Meta-Data Programming

Bobby Woolf
SilverMark, Inc.

I have designed and developed four systems where I used meta-data programming:

1. A file reader framework

2. An HTML parser framework

3. A GUI event recording framework

4. A database data-mining query interface

The File Reader

The File Reader provides a simple interface for programmers to describe the mappings between record-oriented file schema and the corresponding parts of their object model. For example, the File Reader can convert the following record data:

John Smith | 123 Main St. | Lalaland | CA | 12345 | 408-555-1212

into the following object structure:

[image: image1.wmf]a Person

name = “John Smith”

phone = “408-555-1212”

an Address

street = “123 Main St.”

city = “Lalaland”

state = “CA”

zip = “12345”

address

using the following description of the mappings (shown here in Java code):

FormatTreeBuilder builder = new FormatTreeBuilder();
builder.setFieldDelimiter('|');
builder.startResultField(new Person());

builder.addStringField(this.setNameSpec());

builder.startResultField(new Address());

builder.addStringField(this.setStreetSpec());

builder.addStringField(this.setCitySpec());

builder.addStringField(this.setStateSpec());

builder.addStringField(this.setZipSpec());

builder.endCompositeField();

builder.addField(this.setAddressSpec());

builder.addStringField(this.setPhoneSpec());
builder.endCompositeField();
builder.recordField();
return builder.streamFormat();

The resulting stream format can be plugged into a special read stream and used to read any data of this format. The framework does all of the reading and converting work. (For more details about the File Reader’s design, see http://home.att.net/~bwoolf/Frameworks_Patterns/Frameworks_and_Patterns.htm.)

The way the File Reader does this is to allow the user to describe the format of the data (through code, as shown above) and store those descriptions. The key is that the framework does not store the data, but rather stores the description of the data, a.k.a. its schema or meta-data.

The main way the File Reader stores the descriptions of the data is through a hierarchy of classes called FieldFormatDescription. A FieldFormatDescription contains all of the behavior necessary to read a field from the record data; the class itself is abstract. The simplest of the concrete classes are DelimitedFieldDescription and FixedLengthFieldDescription; the latter reads up to a specified delimiter (such as '|' in the example above) and the latter reads a set number of bytes or characters.

Other classes in the FieldFormatDescription hierarchy perform other useful functions that enhance the paradigm of “read the field.”

· CompositeFieldDescription reads several fields and stores them as one (see the Composite pattern). This is how the File Reader reads several fields for an Address but stores them as a single object.

· RecordFieldDescription, which reads an entire record (by using a record delimiter) and then parses its fields (see the Decorator pattern). In this way, even if a record is corrupted by containing too many or too few fields, the File Reader will properly resynchronize at the beginning of the next record.

· DomainFieldAdapter stores a field’s data as an aspect of a domain object (see the Adapter pattern). In the above example, this maps each field’s data to its proper slot in the domain object.

The key here is that each object knows how to read its part of the record and what to do with the data. Each object doesn’t do very much; several are strung together to perform complex tasks. Each one contains a description of what to do when data is provided.

HTML Parser

In many ways, the HTML Parser works very much like the File Reader. However, the user does not have to specify the format of the data; the framework knows the data will follow the standard HTML format.

The heart of the framework is an HtmlNode class hierarchy. Each instance represents an item in an HTML parse tree. Because there are numerous different types of HTML parse nodes, there are an equal number of classes in the hierarchy. Simple Component subclasses like LineBreak and Paragraph represent simple standalone tags (e.g., “
” and “<p>”). Container subclasses like Body represent tags that bracket their data with begin and end tags (e.g., “<body> ..."body data"... </body>”). (This distinction between containers and components is an example of the Composite pattern.)

Each class has named instance variables that represent the known possible attributes for that tag. For example, Table, the Container subclass that represents a pair of table tags (“<table> ... </table>”), contains attributes like align (String), border (int), and width (Dimension), each declared as the proper type (as shown in parenthesis). This ability to uniquely assign attributes to each different type of node comes from the hierarchy approach; it would not be possible the hierarchy were just a single concrete class, HtmlNode.

Each object is a description of its node in the HTML source and its corresponding node in the parse tree. As subsequent HTML standards introduce new HTML tags, the HtmlNode hierarchy can be expanded to handle them.

GUI Event Recording

GUI event recording is useful for testing. By recording the user’s interactions with a software application, a testing framework can then repeat the interactions to test the application in an automated fashion.

The simplest approach is to record the windowing system events themselves. However, this leads to recorded events like “right mouse button clicked at screen position 200 @ 100.” The problem with such a recording is that it’s overly specific. It simply assumes that there is some widget at 200 @ 100 to click on. If the screen size or resolution changes, the window moves, the platform look-and-feel changes, or the developer repaints the window and rearranges the widgets, the event will probably fail to play back properly. This makes tests very fragile.

A more flexible approach is to record a meta description of the event. For example, the user didn’t really click on 200 @ 100; rather, he clicked on the widget at that position, so remember that widget. For that matter, he didn’t really click on the widget; rather, he invoked one of the widget’s actions (behaviors), in this case, one that you happen to invoke at present by clicking on it. So you don’t really want to know “right mouse button clicked at screen position 200 @ 100,” but rather that “toggled the <OK> button.”

This suggests how to record a description of an event, rather than recording the event itself. To record the description of a GUI event, you need to know two things:

1. The widget the event occurred on

2. The widget’s action the event invoked

This means a couple of things. First, if the event didn’t occur on a widget, the event is unimportant and can be ignored. Second, although there are lots of ways to identify a widget, they all boil down to “identify the widget somehow.” Third, although there are lots of ways to invoke a widget’s action, they all boil down to “given this widget, cause it to perform this action.”

This description of the event, rather than the event itself, is more difficult to record but more reliable to replay. As long as the widget exists and can be found, issues such as what it looks like on the screen or its position on the screen become irrelevant. As long as the widget can perform the specified action, issues of how the user invoked the action (mouse click, keyboard click, menu selection, etc.) become irrelevant.

Data-Mining Interface

This example is more difficult to describe. It purpose is rather domain specific and its solution is rather complex. However, this is also my best example of describing business rules with meta-data and developing an active object model.

The users of this system were marketing professionals who wanted to mine customer data for significant tends that would show them how to market their products more effectively. The problem is that there’s a virtually unlimited variety of ways to examine the data, and the vast amounts of data required that the data examination process be automated as much as possible. Yet the process for examining the data couldn’t be hardcoded because of the endless variety of processes the users might want to employ. Furthermore, the users weren’t programmers and couldn’t be expected to modify the system themselves, and no professional programming staff would be available to modify the system once it was deployed.

The mental leap we made in solving this problem was recognizing that the data examining process(es) couldn’t be represented by code, as it almost always is, but rather would have to be represented by objects that the users could manipulate in the deployed system. These objects would have to describe the process, and in doing so would need some way to be executed as if they were code.

I developing the solution, I basically reinvented the Interpreter pattern. A process is represented as a decision tree that is used to query data from the database and sort through it and filter it to see what pattern that produced. Each node in the tree is an ExpressionNode, which consisted of an OperationNode and one or more ArgumentNodes. Operation nodes included simple math (+, -, *, and /) and boolean logic (and, or, equals, etc.). Argument nodes included constants, variables, and the results of other expression nodes. This last capability meant that expression trees could be nested for arbitrary complexity.

This set of objects enabled us to give a lot of help to the user so that composing these trees feels a lot less like programming. Each argument node knows its type (boolean, number, etc.). Each operation node knows what argument types it expects and what result type it produces. This can be used to limit the node choices made available to the user, and to validate the tree at “compile time” rather than have it fail at “run time,” after it might have spent several hours sorting through tons of data. To the user, the ability of the system to make helpful suggestions and catch errors seems very AI like.

As challenging as developing the process domain was, developing the editor views that allowed the users to construct these trees without feeling like they were programming was equally challenging. In hindsight, we may have concentrated too much time on the views initially, but we wanted to make sure that we not only had an adequate domain, but a palatable way for the users to edit it as well. Each expression node know how to represent itself as a set of standard GUI widgets, whose configuration was driven by the operation node. For example, most operations were binary, so the expression node editor would contain three combo-boxes (one each to select the receiver argument, the operation, and the parameter argument). Buttons were included for actions like creating and deleting nodes, etc. If the user chose an operation that was unary or polynary, argument widgets disappeared or appeared as necessary. There was another view for editing arrays of arguments. All of these views were nested and sub-nested dynamically in an editor window depending on what node the user selected for editing. It was all rather complex and time consuming to get working, especially as the domain layer’s design kept changing out from under the view layer’s design.

Conclusions

Developing an active object model through meta-data programming requires a leap from specifying system behavior to specifying a way to describe the specification for system behavior. Think of recording a GUI event: rather than recording what an event was, you should record a description of what the event meant. The File Reader does not record “read the first field and store it in attribute X”. Rather, it uses at least two objects, one that reads the data from the next field (whether or not it’s the first field) and one that takes the data (however it was read) and stores it in attribute X. Figuring out how to describe the invariant properties of data, without limiting the variability of the data itself, is the challenge of meta-data programming.

The other main challenge of developing an active object model is providing the user an intuitive view of the object model that enables the user to see his business rules and to edit them as desired. Because the total functionality of the business rules is constrained by the domain’s ability to express those rules, the view has a known and limited range of functionality that it must support. Nevertheless, even this known range of functionality is complex, difficult to represent to the user intuitively, and poorly supported by standard GUI window painters that are design to support a static arrangement of standard GUI widgets. Thus developing the rules domain is only half the battle; giving the user a UI to those rules is a significant task of its own.

� EMBED Word.Picture.8 ���

09/14/98 13:11
1/4
09/14/98 13:11
4/4

[image: image2.wmf]a Person

name = “John Smith”

phone = “408-555-1212”

an Address

street = “123 Main St.”

city = “Lalaland”

state = “CA”

zip = “12345”

address

_964944044.doc

name = “John Smith”�phone = “408-555-1212”

a Person

street = “123 Main St.”�city = “Lalaland”�state = “CA”�zip = “12345”

an Address

address

