A computational model for a distributed object-oriented operating system based on a reflective abstract machine

Lourdes Tajes Martínez, Fernando Álvarez García, Marián Díaz Fondón, Darío Álvarez Gutiérrez,

Juan Manuel Cueva Lovelle

Department of Computer Science, University of Oviedo

Calvo Sotelo, s/n, 33007 OVIEDO-SPAIN

{lourdes, falvarez, fondon, darioa, cueva}@pinon.ccu.uniovi.es

Phone: +34-8-5103368 Fax: +34-8-5103354

Keywords: object-oriented operating system, object-oriented abstract machine, Object computation, object synchronization, active object model
Abstract

1. The design of an object-oriented operating system (OOOS) involves the design of a model that governs the execution of the tasks. In this paper we show the design goals to build a computation model for an object-oriented operating system based in an object-oriented (OO) abstract machine. We propose to adopt an active object model and we consider features like uniformity, homogeneity or self-contained are essential for objects.

2. Introduction

· The aim of the project OVIEDO3 [1] is to develop an OO integral system where every layer on the system is designed and developed using the OO paradigm. The two OVIEDO3 lowest layers are an abstract machine named CARBAYONIA and an OS named SO4.

The main goal is the design of the OS following the OO paradigm in all the components of the system, including the computational subsystem.

A part of the project will be the definition of the computational model offered by the OS and the abstract machine. We try to endow the system with a concurrency model [3] that maximizes the parallelism degree in a secure way. We have to permit concurrency between objects, between methods of the same object and between several instances of the same method of an object, in the most secure way. There are several ways to introduce the computation mechanism in an OS. We think reflectivity is a very interesting one.

3. In the next section the aims of the computation model are presented. Then the different alternatives in the object model are shown and, finally, we describe the way CARBAYONIA and SO4 cooperate to offer the necesary mechanisms to support the chosen model.

4. Carbayonia Abstract Machine

· Carbayonia is the abstract machine that supports all the objects of the rest of the system and offers the basic object model. The architecture of the Carbayonia abstract machine consists of four areas (See figure 1):

· Class area. Maintains the description of each class. There is a set of primitive classes defined permanently in this area.
· References area. Stores the references. Every reference has a type (relates to the class area) and points to a object of this type (relates to the instance area).

· Instance area. Stores objects created. At run time, the information of its class can be accessed in the class area.

· System references area. Contains references with specific functions in the machine.
[image: image1.wmf]Class Area

References Area

Instance Area

System References

Figure 1. Architecture of the Carbayonia abstract machine.

Each area can be considered as an object in charge of the management of its data. That is, Carbayonia is designed in a reflective way. The main characteristic of the machine is that every action upon an object is made using a reference to it.

SO4: The Operating System

The heart of the Oviedo3 system is the OS, named SO4. The OS offers the abstraction of a single object space where objects exist indefinitely, virtually infinite, and where objects placed in different machines cooperate transparently using messages. Besides, the OS transparently achieves a set of important features: security, persistence, distribution and concurrency.

· The master guidelines of the design of SO4 are:

· Intentionally standard object model, with the more common features found in OO programming languages.

· Object as the only abstraction. The unique existing entity is the object, of any granularity.

· Exclusively OO working mode. A object can create classes inheriting from others, create objects from a class, and send messages to other objects.

· Simpleness. To adhere to the above guidelines, whilst achieving maximum simpleness.

· These are some important characteristics we wish to impose on objects, in accordance with these guidelines [2]:

· Homogeneous objects. All objects, including OS ones, are treated the same. There are no special objects.

· Self-contained objects. All the information about an object, including processing, is encapsulated in its state. The behavior must not be dependent on other objects.

· Transparency. Objects must not be aware of the existence of OS mechanisms to achieve features as persistence, message passing, distribution, etc.

· Complete semantics. Objects have all the semantics embedded in the object model. They are not considered just as a contiguous memory space.

· Object identity. Each object has a unique identifier, used as a reference to access it.

Goals in the design of the computational system for SO4

· SO4 is intended to be an OOOS. So, the computational support must be designed in a way that the OO paradigm is respected. The design goals are [4]:

· Unique, simple and powerful abstraction

SO4 must provide the object as the only abstraction. The OS does not support a process like abstraction that executes the methods provided by the objects. It must be the object itself which executes a method when another object requests it. Conceptually, this is a straightforward idea. But it must be supported by a powerful object abstraction. Each object must encapsulate the processing it is doing.
· Inter-Object Concurrency

SO4 must allow the posibility of several objects executing methods simultaneously.

· Intra-Object Concurrency

Every object must be able to serve more than one method invocation (possibly several invocations to the same method) simultaneously

· Object Autonomy

Each object must maintain and protect its own internal state. So, if intra-object concurrency is allowed, each object will have to decide when to execute the requested methods. If the object has to serve more than one request and they are incompatible, the object must be able to decide, independently of any other object in the system, what to do. It must be able to delay or resume its work.

· Scheduling

· To achieve the idea of only abstraction that encapsulates the computation, every object has to fulfil two goals:

· Schedule jobs when a petition arrives. Each object must be able to start a new activity and to schedule the existing ones based on the knowledge of its own inner state.

· Schedule jobs when a reply arrives. The object must react when a reply arrives resuming the adequate job.

· Flexible computation mechanism

Another goal is to offer the computational mechanism in a flexible way [5]. An object or set of objects should be able to adapt it behavior to their particular needs.

· Portability

This model is portable because it is based upon an abstract machine. This machine offers the basic computational mechanisms.

Object Model for Computation

When designing the computational model there are two different alternatives [7] [3]. They define two different models and two different sets of characteristics for the objects.

Passive object Model

This model divides the objects, from the computational point of view, in passive and active objects. The first ones only contain data and methods. They do not have any capability for the execution and, so, they depend on other objects for executing their methods. The second ones provide the computational ability and they are able to execute methods. They represent the execution flow and they can involve methods offered for more than one object. So, their life is independent from the objects they traverse in their execution.

Active object model

This model defines an object with more semantic content. The objects are defined in a homogeneus way like live entities which contains not only data and access methods but their own computing resources. That is, the objects are endowed with computational power.

In this model, the object is an autonomous entity which interacts with another objects in the system. The mechanism used for the comunication is the message passing.

Comparison

The main advantage obtained by the adoption of an active object model is homogeneity [6]. The active model offers a powerful abstraction of the object that fits well with our goals. These objects will be homogeneous; that is, all the objects will have the same properties. Besides, the objects will be self-contained; every object must contain its own private activities.

Because homogeneity, the same comunication mechanism is used to communicate and synchronized any two objects.

In a passive object model, homogeneity is lost. Two kinds of objects are presented. Because this lack of the homogeneity, the interaction between two active objects can not be made with the same mechanism used to communicate two passive objects.

Object homogeneity provides a lot of aditional advantages. The active object model is a powerful help to the distribution and persistent mechanism. The active object model provides a compact view of the object. The computation in the object is transparent to those mechanisms. So, they do not need to develop special mechanisms to distribute or persist computation.

Another mechanisms as object migration and load balancing will benefit too.

The extension of the passive object model to a distributed environment is difficult. And some form of hidden message-passign will be necessary.

Computational model: Reflectivity

Computational system offered by the OS must provide the mechanisms needed for scheduling, concurrency and synchronization. SO4 collaborates with CARBAYONIA to get all these mechanisms. SO4 extends the default behavior of CARBAYONIA in some areas like scheduling, concurrency control and communication.

4.1 Carbayonia Computation Mechanism

Carbayonia is the lower support level. It provides the objects with the most basic mechanism for the execution of their methods and the communication.

Because Carbayonia is an OO Abstract Machine, it offers its resources as a hierarchy of classes. Objects can be instanced from these classes. Besides, Carbayonia offers a reduced instruction set.

The classes offered by Carbayonia are basic classes. That is, Carbayonia executes directly the methods in these objects. The execution is tomic, without interruption and synchronization is not necessary.

Carbayonia maintains a basic class named thread that represents the execution of a specific method in a specific object. The methods of this object are: suspend, resume, start, ... with the usual meaning. The invocation of these methods allows the abstract machine to suspend or resume the execution of a job giving the basis for concurrent executions.

So, when an object receives a new message, it can create a new thread to represent the execution of the request. To fulfil the self-contained goal, the objects maintain a list of references to their thread objects and manage them.

· Carbayonia offers a set of instructions. The most important for computation are:

· Method Invocation

This instruction informs to an object that the execution of one of its methods is requested by another object. Conceptually, a new thread will be created in the target object to serve this request.

· Exception Mechanism

The machine can communicate with the objects with a mechanism similar to the message passing. This is the exception mechanism. The machine raises an exception when a specific condition is reached. This provokes the current thread tries to capture the exception and handle it. If the current thread can not manage the exception will be necessary to propagate it in the call-reply chain.

Reflectivity

Traditionally, programs had to make its task in a limited computational environment. But, today applications present an increasing complexity. New applications need mechanisms for multithreading, distribution, persistence, migration, load balancing, etc.

Some ad-hoc extensions to traditional systems have been implemented for support these mechanisms. But this solution is quite inflexible.

The ideal solution should be providing applications with new mechanisms. The applications, then, could define the behavior of its environment and modify or extend it if needed. We think reflectivity is a fundamental concept to get it.

Reflectivity can be expressed in two ways: structural reflectivity and behavioral or computation reflectivity.

Structural reflectivity reifies structural aspects of a program like inheritance. An example is the Java Reflection API.

Computation reflectivity reifies the computational aspect and defines the environment where the base actions are executed. This is the most interesting aspect for us.

[image: image2.wmf]Class Area

References Area

Instance Area

System References

Figure 2. Behavioral Reflection. The computation of objects A, B and C transfers control to the meta-level

Computational Model in SO4

The CARBAYONIA abstract machine offers the basic mechanisms to implement a computation system: communication (the CALL instruction), scheduling (time interrupts) and concurrency (machine objects called thread) but the exact behavior of the machine is build with the basic mechanisms and the extensions provided by the applications.

Besides, because the decission to adopt an active object model, the computational model will be express providing some special characteristics to the objects. So, every object will be able to manage its own computation.

Reflectivity is used to extend the machine behavior and is expressed transforming an object in a superobject. The set of objects, which transform an object in a superobject, will be named the object environment.

So, user objects construct some aspects of the abstract machine. For example, when some instructions of the abstract machine (CALL) are executed, the actions for this instruction are especified for a meta-object. (See Figure 3).

Figure 3. The object environmet extends the abstract machine
4.2 Object Environment

The environment where object activities are executed must provide the objects some abilities. These abilities traditionally were part of the OS functionality. Traditional operating systems offer them using system calls or distinguished system objects.

But these mechanisms are inflexibles. Our aproximation is different. We think reflectivity can help us to get an OS that fulfils the goals named in section 4 in a flexible, adaptable and transparent way.

The key idea in the design will be to divide the object world in two levels: base level and meta-level. This meta-level will consist of a set of objects so the uniformity is maintained.

Each object in the base level will be supported by a set of meta-objects. Each one of the components will describe some aspect of the base-level behaviour of the object. This is a popular idea already studied in [8] and [9].

The object environment can be subdivided in three diferent parts:

· Execution Object. It maintains a set of ready threads in the object. It can schedule them and decide which one is the most adequate to execute.

· Communication Object. It takes charge of sending and receiving messages. It can propagate exceptions.

· Synchronization Object. It decides when is secure to pass a thread to the execution object or when is convenient to delay a thread.

Conceptually, each object asks its meta-objects to do something, sending a message to it. The methods in the metaobject are executed in a sequential, not interruptible and exclusive way. Consistency of the inner state and secure processing of the messages are guaranteed.

Figure 4. Interaction between base-level and meta-level.
1: Source object transfer control to its communication meta-object. This meta-object sends the message to the target object and takes charge of synchronization (if synchronous message-passing).

2: In the reception of a message, the target object transfers control to its communication meta-object. This meta-object receives the message and will return the result.

3: Communication meta-object sends a message to the synchronization meta-object. This one will study the convenience to start or delay the execution of the requested method.

4: If the requested method is adequate for execution, the synchronization meta-object will notify the scheduler meta-object to the presence of a new job.

Scheduler meta-object

It takes charge of managing the ready threads in the object. It manages the threads waiting in a synchronous invocation too. The set of threads is divided into two disjoint sets and the threads can be moved between these two sets.

· List of ready threads. Some scheduling policy will be applied over the threads in this list. The scheduling policy is particular to each object. Even, it´s possible for an object to decide to avoid the overhead caused by a private scheduler. So, the object can delegate in a global scheduler object or in a per-appliction scheduler object the task to schedle its threads.

· List of waiting threads. These threads will be waiting in a synchronous call. They will be moved to the above list when the reply arrives.

This meta-object communicates with the high-level scheduler object and with the abstract machine. When the high-level scheduler decides one object is the most adequate to execute, the execution meta-object of the chosen object will decide which thread to execute. This meta-object will ask the abstract machine to start or resume the execution of this thread object. The abstract machine will start to execute the instructions pointed by this thread.

Communication meta-object.

It takes charge to send and receive the messages and to manage them. Each message can be a request, a reply or an exception and there is only one method to manage all of them. The propagation of the exceptions is considered as a particular case of the call-reply chain.

This meta-object builds the message and executes the adequate instruction machine.

Hand-off is used in the message passing. So, when an object sends a message to other, the first will give up some time to the second. The target object will execute the operations needed to receive a message. It must evaluate its inner state and decide to create a thread to serve the request or delay it.

Synchronization meta-object

Two synchronization mechanisms are offered to an object. The first is a coarse-grained mechanism. It stablishes exclusion between incompatible methods. The second is a fine-grained one. The OS offers a semaphore class with the typicall functionality and semantic.

Synchronization meta-object covers the first option. For each object method, m, it maintains a list of methods, M. M represents the set of methods whose execution is incompatible with the execution of m.

To avoid dangerous executions, when a method is invoked in an object, this meta-object decides to execute or to delay it, based in the information above.

When a thread finishes, the synchronizatoin meta-object tests if any other thread in the specific list can continue. This meta-object can specify a special order to evaluate the messages.

4.3 Other synchronization schemes can be implemented for specific purposes.

4.4 Scheduling

Scheduler objects will realize scheduling tasks. These scheduler objects are not different of any other objects in the system because the homogeneous object model provided.

So, it is possible to insert new scheduler objects to provide scheduler functionality to a particular set of objects. It is possible to change a scheduler object for another, which implements a different policy. Even, it´s possible to remove a scheduler object.

By default, there is a general scheduler object in the system. The abstract machine knows it and its reference is one of the system references. The abstract machine will give it quantums of time. The scheduler distributes this time following a specific and modifiable policy. It is possible to insert new schedulers that implement a special policy.

Each scheduler maintains a set of thread objects and it gives up machine time to them. Each thread can be serving a request made by an object or it can be doing inner tasks in the object, for example, inner scheduling.

In the same way, every scheduler object installed by a subsystem or application, will be an object schedulable by other schedulers. The high-level scheduler will give execution time to them. And they distribute it between their objects.

At the lower level, even each object can have an inner scheduler to schedule its own hilos following a specific policy. But, if the object decides to avoid this overhead, it can employ a pre-existent scheduler.

A scheduler hierarchy is created in a transparent way.

4.5 When the time finishes, the thread will return the machine control to the scheduler that gave it the time.

4.6 Advantages of a reflective abstract machine as the basis for an OOOS

Flexibility is the main advantage obtained offering the os mechanisms as extensions of an abstract machine. Each object or application can offer its own meta-objects. These meta-objects modify the standard behavior of the machine adapting it to specific requirements.

Uniformity is maintained because the operating system mechanisms are offered in an object-oriented way. No new abstraction is introduced.

The objects are self-contained and are endowed with the mechanisms needed for the computation management. So persistence can be complete because to persist computation is a straightforward extension to traditional persistence. Besides, distribution obtains some advantages from self-contained objects for object migration.

5. Conclusions

Computation system is a key component of any OOOS. Because the uniform application of the OO paradigm in all the components of the system, we endow the objects with computational power. An environment or set of objects will support each object. These objects provide the basic behaviour to the base object and allow it to execute, synchronize and comunicate.

Reflective architecture of the OS is a promising way to provide a flexible, modifiable and extensible environment.

References

[1] Cueva Lovelle, J.M., and others, Sesión “Sistemas Operativos Orientados a Objetos: Seguridad, Persistencia, Concurrencia y Distribución” (Object-Oriented Operating Systems: Security, Persistence, Concurrency and Distribution), II Jornadas sobre Tecnologías Orientadas a Objetos, Oviedo, Spain, March 1996. (in spanish).

[2] Álvarez García, F., Álvarez Gutiérrez, D., Tajes Martínez, L., Díaz Fondón, M.A., Izquierdo Castanedo, R., Cueva Lovelle, J.M., “An Object-Oriented Abstract Machine as the substrate for an Object-Oriented Operating System”, Workshop on Object-Orientation and Operating Systems, 11th European conference on Object-Oriented Programming (ECOOP’97), Jyväskylä (Finland), June 1997

[3] Chin, R.S., Chanson, S.T., “Distributed Object-Based Programming Systems”, ACM Computing Surveys, Vol. 23, N.1, March 1991

[4] Nierstrasz, O. “Composing Active Objects. The Next 700 Concurrent Object-Oriented Languages”, In Research Directions in Object-Based Concurrency, ed. G. Agha, P. Wegner, A. Yonezawa, MIT Press, 1993

[5] Cahill, V., “Flexibility in Object-Oriented Operating Systems: A Review”, 3rd CaberNet Radicals Workshop, Connemara (Ireland), May 1996

[6] Nierstrasz, O. “A survey of Object-Oriented Concepts”, In OO Concpets, Databases and Applications, ed. W. Kim and F. Lochovsky, ACM Press and Addison-Wesley, 1989

[7] Briot, J-P., Guerraoui, R., “A classification of various approaches for Object-Based parallel and Distributed Programming”, Technical Report. University of Tokyo and École Polytechnique Fédérale de Lausanne, 1996

[8] Golm, M., Kleinöder, J., “MetaJava- A platform for adaptable Operating-System Mechanisms”, Workshop on Object-Orientation and Operating Systems, 11th European conference on Object-Oriented Programming (ECOOP’97), Jyväskylä (Finland), June 1997

[9] McAffer, J., “Meta-Level Programming with CodA”, ECOOP’95, Aarhus (Denmark), 1995

M1

A

B

C

Object A

Method m

{ ...

 CALL ...

 ... }

CALL{...}

Abstract Machine

Meta Level

Base Level

Meta Level

Base Level

Reification

Reflection

M2

M3

M4

Method invocation

1

2

3

4

2

 Meta-Object

Method CALL

{ ...

 ...

 ... }

� INCRUSTAR Word.Picture.8 ���

1
10

_931849833

_954091037.doc

Class Area

References Area

Instance Area

System References

