� set Zpagehead “” � �� autotext Zdefault_logo ���

�
�
�
�
OOPSLA '98 Workshops

Meta-data and Prototypes in an Electronic Market Trading System�
�
�
�
�
�glossary ZAuth * mergeformat��glossary �quote "Zauth_�=1 * CARDTEXT�one�"�Zauth_one� * mergeformat * charformat�Author(s):���
Torsten Layda (torsten.layda@swx.ch)�
� macrobutton SetVersion � glossary Zver7 * mergeformat ��glossary �quote "Zver7_�=1 * CARDTEXT�one�"�Zver7_one� * mergeformat * charformat�Date:�� ��
25 September 1998�
�
�macrobutton SetClassification �glossary Zclass * mergeformat��glossary �quote "Zclass_�=1 * CARDTEXT�one�"�Zclass_one� * mergeformat * charformat�Classification:����
�glossary Zclass0 * mergeformat��glossary �quote "Zclass0_�=1 * CARDTEXT�one�"�Zclass0_one� * mergeformat * charformat�For Internal Use Only���
�macrobutton SetReference �glossary Zref * mergeformat��glossary �quote "Zref_�=1 * CARDTEXT�one�"�Zref_one� * mergeformat * charformat�Reference:����
B-LSG-OOP-8925/E� set Zwatermark "" � ��
�
�glossary Zkeyw * mergeformat��glossary �quote "Zkeyw_�=1 * CARDTEXT�one�"�Zkeyw_one� * mergeformat * charformat�Keywords:���
�
�macrobutton SetFilename �glossary Zfilename * mergeformat��glossary �quote "Zfilename_�=1 * CARDTEXT�one�"�Zfilename_one� * mergeformat * charformat�Filename:����
g:\gbi\msc\lsg\oopsla 98\workshop\oop8925e.doc/TLA�
�
�glossary Zappr * mergeformat��glossary �quote "Zappr_�=1 * CARDTEXT�one�"�Zappr_one� * mergeformat * charformat�Approval:���
�
�glossary Zdist * mergeformat��glossary �quote "Zdist_�=1 * CARDTEXT�one�"�Zdist_one� * mergeformat * charformat�Distribution:���
�
�
�
�
�
�
�
Introduction

Financial markets are an example of an environment where sharing and maintaining large sets of complex information give the holder a competitive advantage.

More and more financial markets are moving away from the traditional open out-cry mode towards an electronic system with participants sitting behind their computer screens. Only electronic systems are considered capable of meeting today's challenges of globalisation and rapidly increasing turn-over. The daily volume traded on the Swiss Exchange, e.g., after two years of operation, would by far not be achievable by traditional open out-cry.

An electronic stock exchange generally consists of two major components:

A central system implementing the actual market place (exchange). This system receives all orders from the market participants and generates trades from these. In addition, it is responsible for disseminating all relevant information to the market participants.

A trading system, which is deployed at each market participant's site. This system is the end-user's entry point to the market place, and provides him with all information relevant for a given market. Today, trading systems supporting more than one stock exchange become more and more common. This approach reduces deployment costs, increases the participants flexibility. It also leads to a tighter coupling of the prices paid at different markets. The standard example are trading systems on which derivatives (options and futures), and their underlyings can be traded simultaneously.

The major challenge for any system supporting electronic trading is the treatment of large amounts of complex financial data. The challenge is two-fold:

The amount of data to be received, processed and presented to the user is ever increasing. This is particularly caused by the growing traded volumes world-wide.

The logical structure of the data is getting more and more complex. This is, among others, due to the growing number of financial instruments, and to the unification of stock exchanges.

It is this complexity of the data to be validated, processed and presented to the user which gives rise to several design challenges. In the following, we shall focus on two particular problem domains, which are of general interest, and to which techniques to be discussed in this work-shop can be applied

Data Model for the Financial Data Relevant for Trading

Configurability of the Graphical User Interface

It is noteworthy that, although discussed here in the context of an electronic stock exchange, they apply to any financial application.

Data Model for the Financial Data Relevant for Trading

Problem domain description

To model all elements occurring in the data of an electronic exchange, a large number of attributes is necessary. Examples are

OrderPrice

OrderSize

OrderDate

OrderExpiryDate

TradePrice

TradeDate

There is a business motivated distinction between, e.g., TradeDate and OrderExpiryDate, in that a TradeDate must lie in the past, while an OrderExpiryDate has to lie in the future. Still, both represent a date and can be considered as two instances of a particular domain type, with different validation rules.

Characteristics like number of digits and decimals, as well as encoding algorithm and null value are usually defined on a domain level.

Domains, in turn, can be further abstracted into base types, e.g. dates and times can both be represented as integer numbers.

Single attributes are used to compose entities like

Order

Trade

Again, these are only examples. In its current version, the SWX trading system data model contains

53 domains

562 attributs

108 entities

Approach currently employed

The following class diagram illustrates these relationships.

�

In this context "class" should, however, not be understood as Java or C++ class. On the contrary, the high number of domains, attributes and entities makes it hardly feasible to write one class per element.

A meta-data based approach can be used instead and is found to be the more advantageous

… the greater the number of elements

... the smaller the difference between them

It also has the advantage of allowing a dynamic change of the data model.

As an example, consider a model with N attributes. Instead of instantiating N different sub-classes of Domain (one per attribute), the same class is instantiated N times. Each instance is initialized with the appropriate values for

domain

comparison method

formatting method

parsing method

validation method

In the meta-data approach, the Is-A relation between Attribute and Domain is hence changed to a Has-A relation.

Patterns used

The following patterns are recognizable in this approach to model the data for a financial application.

Chain of Responsibility: Requests for formatting, validation etc. are passed from attribute to domain to base type, up to the level which can handle the request. This can be used, e.g., to define special formatting for certain attributes

Composite: Entity's are composed of attributes. A request for validation is passed from the Entity to all attribute before it performs its own entity specific validation.

Prototype: Entity's can be composed by Attribute instances. Cloning is used to get an instance of an Entity.

Further development

The following issues are still to be resolved:

In light of the advent of systems supporting more than one market place, models from different exchanges must be combinable. This is a particular challenge when the same entities exist, but are slightly different. Orders, e.g., exist everywhere and have a price, security and size. Other attributes, however, vary. Also, the domains for price, security and size may be different. An agreed standard methodology for modeling financial data would be more than useful in this effort.

Because we are dealing with a domain for which the experts are mostly not proficient in OO design, a specification language understandable for them is needed.

Configurability of the Graphical User Interface

Problem domain description

The data of a financial market is not only difficult to model, but also hard to organize on the user's screen. The user has to be able to compose her display according to her activity profile. A bond trader has different requirements than a share trader; a broker trading for the bank's account works differently from a port-folio manager.

A typical trading Graphical User Interface allows the user to lay out an unlimited number of views on the screen. Such a view may be characterised, among others, by

position

behavior (rolling, static, dynamic, insertion of new elements)

the entities shown and their sequence

the attributes shown and their sequence

specific data selection criteria

Approach currently employed

The view's configurability can be modeled by 3 tier approach:

InstantiatedView: Instance of the class responsible for representing the view on the screen

ConfigurableView: Encapsulation of all attributes the user can change (e.g., name, size, position); generally stored in a persistent store

ViewType: Encapsulation of all attributes the user can not change (e.g., behavior, shown entities); generally compiled into the executable or read from a read-only store

�

ViewType are commonly implemented using a meta-type approach: For each type of view supported by the system, an instance of the ViewType class exists in a catalogue. This approach is found to be the more advantageous

... the greater the number of view types

... the smaller the difference between them

Some of the ViewType characteristics can not be abstracted into some canonical attribute. In this case, the ViewType holds a prototype instance of the applicable InstantiatedView class.

When a view of a given ViewType is to be constructed, its prototype is cloned. The data from the ConfigurableView and the ViewType are passed to the clone method.

Each view, in turn, is composed of a number of other configurable objects, like columns, selection criteria and sorting criteria, which can be composed as well. For these components the same 3 tier approach as for views is used accordingly.

Patterns used

The following patterns are recognizable in this approach:

Prototype: Complex attributes of Types are kept as instance of the corresponding instantiated class; note that, other than in the classic Prototype pattern, the clone method takes Configurable (and hence ComponentType) information as parameters

Composite: Views are composed of other configurable objects, all following the same 3 tier, prototype based approach; save and restore requests for the Configurable are forwarded through the whole of that composite

Flyweight: Type's are shared as Flyweights between Configurable's.

Further development

The following issues are still to be resolved:

A description language allowing business personnel to specify ViewTypes and their components would be very useful. This would allow to bridge the gap between the software designers and those with the business knowledge and to short-circuit the analysis — specification — implementation cycle.

skljfdhsdlkhfl

�styleref Zdomain�	�glossary Zpage * mergeformat��glossary �quote "Zpage_�=1 * CARDTEXT�one�"�Zpage_one� * mergeformat�Error! AutoText entry not defined.� ��page�6�

�styleref Ztitle�Meta-data and Prototypes in an Electronic Market Trading System�	�styleref Zreference�B-LSG-OOP-8925/E�

�glossary �quote “Zpagehead” �ref Zpagehead��Zpagehead� ��if “�page�6�” = “�page * roman�vi�” ”” “�if "�seq Appendix \c�0�“<> "0" "�autotext ZAppendix ��glossary �quote "Zappendix_�=1 * CARDTEXT�one�"�Zappendix_one� * mergeformat * charformat�Error! AutoText entry not defined.���seq Appendix \c * ALPHABETIC� �” “�styleref "Heading 1"�Configurability of the Graphical User Interface�"�Configurability of the Graphical User Interface� “�Configurability of the Graphical User Interface ��	�styleref Zversion�25 September 1998�

�glossary Zwatermark��print \p page "/Helvetica findfont 48 scalefont setfont 300 420 translate 60 rotate 0.9 setgray 0 (�ref Zwatermark * charformat�) stringwidth pop 2 div sub 0 moveto (�ref Zwatermark * charformat�) show"��

� autotext Zwatermark ��print \p page "/Helvetica findfont 48 scalefont setfont 300 420 translate 60 rotate 0.9 setgray 0 (�ref Zwatermark * charformat�) stringwidth pop 2 div sub 0 moveto (�ref Zwatermark * charformat�) show"��

�styleref Zclassification�For Internal Use Only�

� autotext Zwatermark ��print \p page "/Helvetica findfont 48 scalefont setfont 300 420 translate 60 rotate 0.9 setgray 0 (�ref Zwatermark * charformat�) stringwidth pop 2 div sub 0 moveto (�ref Zwatermark * charformat�) show"��

�styleref Zclassification�For Internal Use Only�

