OOPSLA98 – MetaData Workshop Position Paper

Randy Dong

Landmark Graphics Corporation

#2200, 645 – 7 Ave SW

Calgary, AB

Canada

T2P 4G8

Phone:
(403)263-0070

Fax:
(403)262-1929

September 28, 1998

Background

I work for a company that has grown through acquisition. Our division is faced with the problem of integrating 20 applications that were developed by 4 different groups (companies). The applications are of 2 flavors: transaction database systems (operational) and engineering calculation systems (engineering).

The engineering systems mainly use serialized or flat files for persistence but clients have requested we move to a common shared data model across all our applications. The number of distinct data attributes for the engineering systems is on the order of 20,000 (at least 500 tables). The systems are used to provide design and maintenance support for oil & gas wells.

The operational systems are used to capture information during the actual drilling & completion of the wells. This information is captured in an historical database for later analysis. The analysis provides significant input to the engineering systems to help improve designs for new wells. The number of distinct data attributes for these systems is on the order of magnitude of 5000 (at least 200 tables). These have always been on top of a database.

Solution Approach

To solve this problem we decided to build a framework that would:

1. Provide transparent and easy access to a database

2. Make data access transparent regardless of the source of data (eg. from DB, registry or calculations)

3. Allow us to rapidly port existing applications to the new framework

4. Allow us to transparently integrate all our applications

To meet this challenge we based our design on a three-tier system: UI layer, Business layer and a Persistence layer. We felt the UI and Persistence layers were the least stable (would require constant modification and customization) so we considered the Business layer to be the foundation of our framework.

To allow the UI and Persistence layers to be changed we wanted to avoid hard-coding as much as possible. Further, even though the Business layer is the most stable it still needs modifications so we avoided hard-coding this as well.

We developed a declarative language very similar to XML to specify our UI and Business layers. We didn’t use XML because we got started before it was available. Moving to XML is one of our future goals.

The Persistence layer is characterized by a collection of metadata. There is also a significant portion of our Business layer specified in this metadata as well.

To keep us honest, we developed the framework in parallel with 3 engineering applications. The framework team also had significant representation from the operational applications group. We’re in the final “code complete’ stages for these 3 engineering applications (2000 data attributes) as well as the core framework. Design work has already begun on our main operational application.

Metadata

Our metadata data model was greatly influenced by Michael Brackett’s book The Data Warehouse Challenge. He classified several forms of metadata that we implemented in our system. In summary, our metadata data model looks like this (child tables are nested within parent tables; tables listed in bold, attributes are underlined, comments prefixed by REM or within parentheses):

BusinessObject

REM Lists the available business objects

Name

Physical Database Table (if any)

Primary Keys (if any)

Foreign Keys (if any)

BusinessObjectLinks

REM Describes the relationships between business objects

ParentBusObj

ChildBusObj

LinkType (Identifying, Non-identifying, App-specific)

LinkInfo (special join info, if any)

End BusinessObjectLinks

BusinessRules

REM Lists business rules attached to specific business objects

BusObj

PROGID (COM identifier for component implementing the rule)

End BusinessRules

Dictionary

REM Lists the attributes belonging to each business object

BusObj

AttributeName

DatabaseTable (if any)

DatabaseColumn (if any)

PROGID (COM identifier for primary populator of this attribute)

App-specific properties (eg. unit conversion info, etc)

AttributeRules

REM Lists business rules attached to specific attributes

BusObj

AttributeName

PROGID (COM identifier for implementor of this rule)

End AttributeRules

End Dictionary

End BusinessObject

Placing COM PROGID’s in the metadata is what gives this framework its reflective nature. If we need to modify some business rule or calculation we just need to update the metadata with new PROGID’s and the system changes its behavior.

An important property of the dictionary is a one-to-one mapping between attributes and some component that acts as the primary populator. The aim is to eliminate ambiguity regarding what an attribute represents. If there’s ambiguity then the framework (as well as users and developers) can’t make reliable inferences about that data.

Business objects are composite objects made up of multiple COM components. The main, top-most business object class provides access to data attributes in a generic manner. In essence, a business object looks like a query result set. Each attribute is a column of values within that result set.

Contained within a business object is some number of business rules, calculations,and zero-or-one persistence component. These are responsible for populating, validating and/or persisting the data attributes’ data. From a client’s perspective, data attributes are self-populating.

Structure

Everything in the system is coordinated using the Observer-Subject design pattern and a priority queue. Data attributes are the Subjects and all clients are Observers. Whenever an attribute’s data changes, all Observers are notified. If the Observer wishes to take some action it must add itself to the priority queue. An execution sequencer walks the priority queue telling each entry to Execute its action (quite analogous to the Command pattern).

The priority queue’s primary purpose is to prevent multiple execution of the same object. An object adds itself to the priority queue whenever one of its input attributes change. If an object executes too soon, it might re-added to the queue when another object executes. The priority queue ensures everyone executes in order. Priority is determined at runtime based on walking the input/output attribute graph (every object attaches to an attribute as an input or as an output resulting in a directed, acyclic graph).

The application environment behaves very similar to a Web browser. When starting the application, it loads our XML-like template which totally configures the UI. It configures the menus, toolbars, views, etc. It also describes the instances of the business objects. The business object descriptions in the metadata is more like class descriptions. The template descriptions are like instantiations because they request certain sort orders, subsets of columns, grouping, filtering, etc.

RAD

Using data attributes as Subjects allows us to stop trapping UI level notifications (eg. combo-box selection change). All UI controls are wrapped to translate UI actions into data changes. All developers now use “data change notification maps” instead of UI control notification maps. This allows business logic to follow the data instead of being coded within the UI form. Because the business rules are listed in the metadata, UI logic can be reflective as well as business logic.

For example, if an oil well is on land then the “Water Depth” data attribute is not needed. Traditionally, a developer would program the enabled state of the “Water Depth” edit control based on the current state of the “Is Well Offshore” check box. In large applications with 1000s of forms, you can’t manage the UI logic using the traditional approach. Adding data to a new form requires sifting through dozens of files looking for the “definitive” version of the UI logic associated with the data.

Instead, we use Business rules specified via the metadata. These rules modify data state flags attached to each attribute (eg. IsDisabled, IsReadOnly, IsNull, etc). The UI control wrappers inspect these flags to decide how to present the data (eg. enable/disable the control). Everywhere a piece of data is displayed, it obeys the associated business rules. If the rules change we update the PROGID’s in the metadata and every form containing that data start using the updated rules.

With all the business rules (which controls the UI state) contained with the Business layer, it becomes possible to build a RAD environment where a non-developer can layout controls and bind data to them. The resulting form will display just a much smarts as any other form.

One of the weakpoints of current RAD tools is their tendency to bind directly to the database. In our system, all data binding is to the business layer. The RAD user can access any data throughout the system and be assured that all appropriate rules will follow with it.

This feature addresses the application development and integration issues.

Database Integrity

Since the metadata describes the entire data model, we can make inferences about referential integrity. The framework uses the metadata to perform cascading deletes as well as cascaded copies (SaveAs). We operate on multiple database platforms, so we’ve taken the approach of having our framework do this work instead of managing platform specific configuration information.

Whenever adding new records, the metadata tells us what key fields to copy from the parent record. Similarly, when navigating a hierarchy, the links tell us the valid paths as well as what parent key values are needed to scope the child query.

Again, because this information is in the metadata, we can modify it to change the way database integrity is maintained. This use of reflection facilitates data model changes.

