
File: eplop98final last update: 28.05.1998 printed: 28.05.1998

References

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

References
[Beck96] Kent Beck: Smalltalk Best Practice Patterns, Addison-Wesley, 1995

[GHJV95] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns – Elements of
Reusable Object-Oriented Software, Addison-Wesley, 1995

[MäBi96] Kai-Uwe Mätzel, Walter Bischofberger: The Any Framework A Pragmatic
Approach to Fleibility, USENIX COOTS Toronto, 1996

[Noble98] James Noble: The Object System Pattern, submitted to EuroPLoP 98, 1998

[POSA96] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, M. Stal: Pattern-
oriented Software Architecture–A System of Patterns, J. Wiley & Sons, 1996

[PLOPD3] Pattern Languages of Program Design 3, Addison-Wesley, 1997

[Riehle96] Dirk Riehle: A Role-Based Design Pattern Catalog of Atomic and Composite
Patterns Structured by Pattern Purpose, UbiLab Tecnical Report 97.1.1, 1996

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

• Retirement of no longer useful registry entries almost impossible. The
decoupling of registry entries from the components using it might
lead to a lot of dangling entries that are no longer used by anyone.
However, implementing garbage collection in a registry requires
inspection of all components using it. This is one reason why people
suggest re-installing Microsoft Windows from time to time.

• Name clashes possible. A Registry cannot restrict the use of useful
names. Different subsystems might want to use identical names. You
can either cope that situation with strict rules on how to choose
names and by hierarchically grouping name spaces. Another way
observable is that subsystems generate cryptic names automatically

• Weak access control. The Registry is intentionally a global resource.
Therefore, any subsystem might access and even change its content.
This can result in fatal situations (have you ever tried regedit under
windows?) or trojan horses looking for weekly encrypted password
information in the registry.

• Database management system might be the more effective choice.
Some of the above mentioned benefits and liabilities are better
balanced by a database management system. If you have to keep
track of a huge amount of registry entries, a simple implementation
of a Registry might not be able to cope with the situation. Then using
a DBMS might scale better.

See Also Factory Method can be implemented nicely using a Registry of
Prototype objects [Beck96]. A Manager [PLOPD3] also benefits from a
Registry holding all managed objects. Flyweight [Beck96] proposes
the use of a registry of flyweight objects.

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Registry

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Consequences The Registry pattern implies the following benefits :

• Centralized place for configuration data. The Registry infrastructure
defines a common and reusable way to store and retrieve global and
possibly persistent configuration data. Therefore, extensions of your
system do not have to re-invent and reimplement their own
configuration data storage and retrieval systems.

• Yet-unknown extensions or objects can be added later on. The
structure of the Registry content can be easily extended to
accommodate new entry names and also new kinds of entries.

• Sharing of configuration data. Storing configuration data in a global
registry makes it easy to share it among different clients. If a user
wants to change the default system font it can be done in a single
place, instead of individually changing properties of all used
programs.

• Different system behavior by multiple versions of the registry. The
separation of configuration data makes it easier to run a single
installed component in different configurations by just exchaning the
configuration data in the registry. If the registry allows easy exchange
of a complete set of configuration information this is a useful
operation. Another option is to have a system installed one time but
provide different registries with configuration data to individual
users.

However, the Registry pattern also has its liabilities :

• A global Registry requires mutual exclusion or copying. Because the
Registry is a shared global resource, it either requires locks if
modifications are done to it, or each process or thread requires its
individual copy. Both ways impose additional run-time overhead.

• Naming of slots not checked by a compiler ('color' vs. 'colour'). Separate
components might use identical names with desatrous results.

• Semantics of registry entries not given by class code only by clients.
The entries kept in the registry do not have the ability to define where
and how they are used.

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

class RendererInstaller {
public:

RendererInstaller(const char *name, Renderer *r);
};
#define RegisterRenderer(name) \

static RendererInstaller _NAME2_(name,Registerer)\
(_QUOTE_(name), new name())

#endif

Using this infrastructure the implementation file of a class
MyRenderer needs to call the macro on top-level scope:

RegisterRenderer(MyRenderer);

6 Implement the clients. Clients using a registry can be implemented
straight forward. One major design concern is chosing names. The
second larger issue is implementing the default behavior of lookup in
the registry fails. Just crashing the program or even the system
should´t be your choice if the registry content is not sane.

7 Implement debugging support. Finding errors in a system due to
wrong registry contents is a tedious task. Especially when the size
and structure of the registry hinder its understanding. Therefore you
should provide means to analyse the registry, like a viewer, a
converter to text format, and a search mechanism. In addition each
programmer of client code should be obliged to document the entries
that her codes uses.

Variants Named Object . The Named Object is a special application of the
Registry pattern together with object initialization by configuration
data.

Known Uses Microsoft Windows uses a hierarchically structured Registry to store
system-wide configuration data used by all installed programs.
Usually setup programs install required information of the installed
programs in the registry.

The UNIX operating system provides each process with its so-called
environment. This environment stores globally name-value pairs,
where each name and value is a string. It is used to pass globally set
parameters from parent to child processes.

The X window system provides X client programs with a global
registry of settings stored by the X server, that provide default values
for user interface parameters in a hierarchical way. The xrdb program
can be used to modify the settings for a running X server.

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Registry

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

On the other hand, if your target is a single program, consisting of
several partly independent components your registry can well be
refered to by a global variable or be implemented as a
Singleton[Beck96].

2 Determine the name space. The more components share the registry,
the more likely it is that they use identical names for different
elements. If you predict such name clashes, provide your registry with
a hierarchical name space. One solution might be to have two levels,
one for the program name the next one for the program specific
entries. You get the highest level of flexibility if you allow for arbitrary
nesting depth. However, a flat namespace can be easier to implement
and maps easily to a simple file for persistency.

3 Design the default behavior. When several components are sharing
the registry and it has a hierarchical name space separating their
configuriation, it can be tedious and inefficient to install the same
entries for each component separately. In this case, define a specific
default category and modify the lookup procedure such that it
consults the default category whenever a name search in a specific
category failed.

4 Implement the persistency mechanism of the registry. It depends on
your registry´s scope if the content needs to be persistent to program
endings, system crashes or whatever. In the case you require a simple
mechanism to store the registry you need to chose a file format. If the
namespace is flat and values kept are simple a file format with a
single line per entry can be sufficient. For hierarchical configuration
information external Anything format has proven to be an ideal
candidate. More complex or elaborated persistency mechanisms up to
a database system should be considered if the requirements of the
registry users promote their use.

5 Implement the installers. Usually installation of registry entries
requires almost identical code. Therfore you can provide generic
setup programs (in the case of system wide registries) or installer
components (in the case of in-program registries). In our C++ example
we define a preprocessor macro that allows implementors of new
Renderer components to install these easily in the registry of renderer
objects. The installer class serves the purpose to define a static object
that automatically installs an instance of the renderer whenever the
corresponding renderer object file is linked to a program.

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Dynamics A typical scenario of using a registry consists of the phases
installation and client access. During installation an installer
component inserts or updates one or more registry entries. After that
clients are able to access the registry and retrieve the names
components.

Implementation To implement the Registry pattern follow the following steps:

1 Define the scope of the registry. If you are building an operating
system or a comparably complex infrastructure, you have to create a
registry that can be used by several programs. Thus the access to the
configuration data in the registry should be given by your system API.

 Installer

install(name,value)

Registry

Map<name,value>

set(name,value)
get(name)
removeslot(name)

Client

task

accesses

global data

 Element

installs

element

creates
element

Client Registry

Element

Element

task

lookup

insert_registry

dosomething

Element

key

Installer

key

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Registry

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

get corrupted by concurrent access by several programs or by a
misbehaving program.

One option to store such data is a database management system. But
using a full-fledged database requires too much development and
run-time overhead or too high license costs.

Future extensions of your system might require additional data or
objects not known in advance. You do not want to hard-code the
number and names of all of your configuration information to allow
easy extensibility.

How do you implement a globally accessible and extensible data or
object storage?

In particular you want to address the following forces:

• You want to access a set of global configuration data or objects.

• You want to extend the system in the future with yet unknown
configuration data or objects.

• You want a single mechanism to store and access this
configuration data.

• You want to modify the configuration data indepent of the program
code using it.

• If you are building a single program, the built-in type system of the
language is not flexible enough to deal with these issues directly by
keeping track of global variables or objects for you.

Solution Implement a Registry, that maps objects or configuration data names
to instances or values. In the case of configuration data, this registry
holds all name-value pairs for each configuration element. If you want
to keep track of a set of initialized objects the registry stores these
objects references accessible by name.

Every configuration element or object is registered with its name and
value or reference in the Registry by an installer component. Later on,
client components access theses objects or data just using the global
registry and the well-known names.

Structure The client components are usually unaware of the installers, that put
the data elements or objects in the global registry. Therefore you get
a structure like the following.

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Registry

The Registry design pattern is useful for implementing globally
accessible (configuration) data in an extensible way.

Example Consider our example with the Renderer classes from above. We are
using a simple interpreter to call the Renderers given by their name.
However, the class Renderer is intended to be subclassed, but we do
not want to change our interpreter whenever a new Renderer
subclass is invented.

How can we guarantee that every renderer called also exists? In
contrast how can we ensure that our interpreter knows each new
renderer?2

A second example in our HTML generator framework relating to this
pattern is the global configuration data. Each renderer that needs to
generate some URL pointing back to the system must know where the
program is running, where images should be located, etc. How can we
provide a means for all this shared information to be easily accessible
without copying it around to each individual piece?

2. In Java it is possbile to use the ClassLoader for this purpose.

Context You are developing a flexible piece of software, to be extended in the
future. This can be an operating system, a user interface platform or
an application framework, for example.

Problem You want to store and access global (configuration) data or objects in
a flexible and extensible way. Using global variables in your program
is not be appropriate because global variables are considered bad
practice and initialization of those variables might not be possible
after program compilation.

In addition some configuration data might be shared by different
programs. Storing this configuration data in simple files can solve the
global persistent storage problem, but it requires to implement
reading and writing the file format whereever it is used. In addition it
might be hard to implement access control to the file. Thus it might

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

related to that data is de-coupled from it externally in your system.

• Run-time overhead can be substantial because of name-lookup.
Especially in contrast to a compiled indexed memory access a name
lookup and eventually type-check can be orders of magnitudes more
expensive. If you expect slow performance, carefully decide where you
have other implementation options.

• Overuse. Anythings are not “Everything”. Make sure, that you are not
ending up using Anything objects for your key abstractions in your
system.

See Also A Registry with hierarchical name space can be implemented using
Anything. Named Object can be implemented nicely using Anythings
for configuration data.

Credits Thanks go to all Anything inventors, some of them—as far as I was
told—developed the idea independently [MäBi96]. I still wonder if
combining sequences with hash-table-like access is a good idea or
not. I suppose André Weinand and Erich Gamma will know. Special
thanks to Andi Birrer who has kept up changing our Anything
implementation throughout all our enhancements.

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

needs of data-exchange without requiring a change to the interface
syntax.

• Automatically memory managed (in C++). The application of the
Counted Pointer idiom fits nicely in the structure. Sharing the
implementation objects, i.e. the place where the data resides is
efficient and restricts copying the data structure to a minimum.

However, the Anything pattern also has its liabilities :

• Less type safety. Because an Anything can represent arbitrary data
structures, the compiler can no longer check, if parameter passed
really fulfil the requirements by the place used. However, because you
define your own meta-information interface with GetType(), GetSize(),
SlotName(), and IsDefined(), your program can control validity of
data-type stored in an Anything at run-time.

• Intent of parameter elements not always obvious. Anythings define
their own name-space managed by the program you get the same
liabilities as Property List regarding the naming of slots. This
situation requires carefully created and maintained documentation of
the names used.

• Code overhead for value lookup and member access. Anythings
require overhead for accessing elements by name compared to fixed
data structures defined in your programming languages. In C++
operator overloading can help with this situation. But error-handling
and determining if names required are defined can bloat the code.
Using the default mechanism of the access methods can help a little.

• Dangling elements in configuration data. When your system uses large
configuration data files and is changing over time, the question if that
“/foobaz” thing in your configuration is still used arises quite often.
You can either ignore the situation and make life harder for the
maintainer of your system or you keep an eye on accurate
documentation of the slot names used in your configuration data and
expected by your program.

• No real object, just data. Anythings are implemented by classes.
Nevertheless they represent just structured data. All semantics

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

format proved to be very useful to specify configuration data in a very
flexible way. Such configuration data can be accessed via a Registry
or used on a per-object basis like described in Named Object.

Known Uses ET++ (André Weinand)

Beyond SNiFF and SNiFF (Walter Bischofsberger)

WebDisplay (IFA Informatik, André Weinand, Erich Gamma, etc) uses
Anythings for value parameters, structured ´global´ variables,
configuration data, and Registry objects for managing the
configuration data within the running system.

Consequences The Anything pattern implies the following benefits :

• Useful as universal data parameter. Anythings have been proven to
work, whenever an open set of data parameters need to be passed
around.

• Allows really useful interfaces without overloading. A problem with
extending a class-hierarchy is, that additional sub-classes might
require additional parameter data. However, just adding a method
with the same name and a different number of parameters does not
provide to be useful, because such overloading is confusing and
usually breaks the application of polymorphism.

• Configuration data can be nicely represented. Anythings are content
extensible. Therefore, the readable external representation fits nicely
the needs of typical configuration data.

• Less complexity due to fewer classes. Getting rid of parameter classes
can reduce the number of elements a programmer needs to
understand when using a framework. In addition, Anything as
parameter can reduce confusion on where to put functionality, it does
not belong in the parameter class.

• Program to program communication. Like other data structures that
have a defined syntax or are self-describing, the external Anything
format is ideal for passing values between programs. In contrast, for
example, to Corba-IDL structs giving a fixed data-structure defined as
an inter-process interface, an Anything can fulfil current and future

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

// query number of elements
long GetSize();
// returns slot index
long FindIndex(const char *k) const;
// just check if slot is defined
bool IsDefined(const char *k) const;
// returns name of slot (if any) - meta-info
const char *SlotName(long slot) const;
// accesses element slot in array
Anything &At(long slot);
Anything &At(const char *slotname);

For convenient syntax, you might overload the array-access operator
in C++ to benefit from convenient syntax.

7 Define the external format and implement it. Implement write methods,
dumping an AnyImpl on a stream and a corresponding parser
reconstructing an Anything from a character sequence on the stream.
If you intend to use the external format as configuration data, look for
a human understandable syntax (and possibly a pretty-printing
output). The grammar might look like the following (ommitting the
details of masking characters within strings and of treating white-
space):

any : [0-9]+
| [0-9]+\.[0-9]*(E[+-]?[0-9]+)?
| string
| *
| { anyseq }

anysq: any anysq
| ´/´ string any anysq

string: ´"´ .* ´"´
| [A-Za-z][A-Za-z0-9_]*

If you want to ́ deep-copy´ an Anything using a in-memory stream can
be used to implement this operation.

8 Decide where in your system you should use Anythings. Anythings are
great in some places as given by the problem statement above. As a
flexible parameter passing mechanism in a framework they can be a
real life saver. However, you should make your key abstractions in
your framework explicit parameters, where used, to reveal more of the
intention of your operations. Anythings can be handy to solve
covariance problems, where different elements or extensions of your
framework co-operate via standardized interfaces. The external

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

• share it, then any modification by the program is visible everywhere
it is used,

• pass it around mostly as read-only data. This can be accomplished
by a specific ReadOnlyAnything handle, that doesn´t allow
modification to the refered data.

• implement a copy-on-write schema. This is the most advanced
implementation and can impose a large run-time overhead if large
data structures stored within an Anything.

4 Decide how to handle empty Anythings. There are several options to
choose from:

• Use a null pointer value and check fAnyImpl pointer for validity
before use.

• Implement a specific AnyNullImpl class. This is an application of
the Null-Object pattern. You can consider applying also Singleton
and share the AnyNullImpl instance (you have to adjust the self-
deletion property of AnyImpl´s constructor).

• Use an instance of the AnyImpl class for implementing the case of
an empty Anything.

5 Implement the required concrete implementation classes. It is usually
straightforward. Nevertheless, you need to decide what useful
conversions should be allowed. For example, retrieving a string from
an internally stored integer is a convenient operation.

6 Implement the Anything sequence/associative array. These are
conceptually two different things, but can be implemented together.
Our experience in using Anythings showed, that the associative array
is the more common use for filling in data (e.g. to mimic record
structures), but extracting data is done both ways, via associative
lookup and via iteration through the defined elements. Simple
sequences are treated as anonymous entries in the associative array,
just accessible via iteration or numerical indices. The resulting
interface for such array access has to be given by classes Anything
and AnyImpl:

long Append(const Anything &a);
// removal (sequence and associative array)
void Remove(long slot);
void Remove(const char *k);
// associative access

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

class Anything {
public:

Anything(); // constructors
Anything(int);
Anything(double);
Anything(const String&);
Anything(const Anything &a);
~Anything();
// coding of meta information
enum EType {

eNull,
eInteger,
eDouble,
eString,
eArray

};
EType GetType() const;
Anything &operator= (int);
Anything &operator= (double);
Anything &operator= (const String&);
Anything &operator= (const Anything &a);
// conversion
String AsString(const char *dflt= 0) const;
int AsInteger(int dflt= 0) const;
double AsDouble(double dlft= 0.0) const;
//... some things omitted here

private:
AnyImpl *fAnyImpl;

};

2 Implement the Anything handle class. The constructors, assignment
operators and destructor have to take care about the reference
counting (in C++). Otherwise the implementation is straightforward
delegation to the AnyImpl object refered to by the Anything handle
object.

3 Implement the abstract implementation base class. This class
(AnyImpl) mimics the Anything interface with corresponding virtual
functions (in C++). The AnyImpl abstract class might provide
convenient default implementations of the access methods by just
returning the default value passed as parameter. In addition it
implements the reference counter and methods for its adjustment.
Whenever the counter reaches zero an AnyImpl object deletes itself (in
C**).

You have to decide how you share the AnyImpl subclasses between
different Anything handle objects:

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Dynamics There are no specific interesting dynamics of using Anything.

Implementation To implement the Anything pattern perform the following steps:

1 Define the Interface and the needed elementary data types required by
your Anythings. A typical Anything implementation supports strings,
integers and floating point values as possible data elements within a
simple anything. Other data values might be interesting and useful
for your specific application as well. The interface of the Anything
handle class allows access to any type that could be stored within the
Anything. However, to provide a tolerant behavior, we add a default
parameter to each access function, that is returned when the
concrete value stored cannot be usefully converted to the requested
type. For each of the possible elementary types we define a
constructor as well. To distinguish the content type of an Anything,
we introduce a home-made meta information within the Anything,
that can be implemented by an enumeration type that is returned by
a GetType() operation. The resulting interface might look like the
following excerpt:

many

 Anything

AnyImpl *pl

String AsString(default)
double AsDouble(default)
int AsInteger(default)
Anykind GetType()
Anything& At(int index)
Anything& At(String index)
...

AnyImpl

int refcounter

String AsString(default)
double AsDouble(default)
int AsInteger(default)
Anykind GetType()
Anything& At(int index)
Anything& At(String index)

Client

task

uses

AnyStringImpl

String value

AsString()
GetType()

refers

AnyIntImpl

int value

AsInteger()
GetType()

AnyArrayImpl

Anything values[]
Map<String,int> keys

Anything& At(int)
Anything& At(String)
GetType()

AnyDoubleImpl

double value

AsDouble()
GetType()

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

{ # this is a comment, the brace starts a sequence
a slash followed by the name denotes a string index
/name "Peter Sommerlad" # string index, string value
/age 33 # couldn´t think of another integer
/nofbooks 0.2 # one fifth of POSA :-)
/patterns { # just a sequence
"Property List" "Anything" "CommandProcessor"
}

}

Reading such a text would result in an Anything holding an
AnyArrayImpl sequence with 4 elements with index names “name”,
“age”, “nofbooks”, and “patterns” respectively. The elements are
internally represented by an AnyStringImpl, an AnyIntegerImpl, an
AnyDoubleImpl and an AnyArrayImpl respectivly. The last one holds
an anonymous sequens of three Anythings, each represented as an
AnyStringImpl.

Structure The resulting Anything infrastructure classes follows a handle-body
schema, where class Anything represents the monomorphic handle,
that is passed by value (in C++). The AnyImpl hierarchy represent the
polymorphic body objects, that are refered by the handle. These body
instances are normally shared and reference counted. Thus memory
management of the Anything content is automatic for the user (in
C++).

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

To distinguish different stored values the AnyImpl subclasses provide
a simple meta-information interface returning the specific kind of
value stored. Nevertheless, class Anything allows client program code
to retrieve the kind of value from it, as desired. To allow for normal
program continuation, each value access method of class Anything
provides a default value, which can be specified by the client, that is
returned if a data type is retrieved that cannot be usefully converted.

The AnyArrayImpl class is used to keep dynamic growing sequences
of Anythings. In addition to indexing via integers, it allows string
indices using a hash-table lookup.

Additional infrastructure is needed to serialize Anything structures
and to parse the file representation of them. A simple grammar is
sufficient. An Anything representing some author information might
look like:

Class
AnyImpl

Responsibility
• abstract class de-

fining interface for
all Anything imple-
mentation types

• implements refer-
ence counter and
thus memory man-
agement following
Counted Pointer

Collaborators
Anything
AnyIntegerImpl
AnyDoubleImpl
AnyStringImpl
AnyArrayImpl

Class
Anything

Responsibility
• Handle class to be

passed by value
throughout the
program.

• Maps its interface
to AnyImpl.

• Provides serialized
I/O on character
streams.

Collaborators
client components
AnyImpl

Class
AnyArrayImpl

Responsibility
• implements se-

quences that can
be indexed by inte-
gers and strings if
a string index is
defined.

Collaborators
Anything
AnyImpl

Class
AnyDoubleImpl

Responsibility
• Anything im-

plemetnation
class holding float-
ing point values.

• access as string,
integer, and bool-
ean (non zero) is
defined.

Collaborators
Anything
AnyImpl

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Look at our example above. For creatig HTML we might not want to
specify all renderer parameters within your program code. This would
require a re-compile for each data value changed. It would be nice to
have a configuration mechanism that allows us to specify renderer
objects used and their corresponding parameter values by a simple
mechanism like a text file. In addition it would be nice to define a
format that allows us to implement the configuration reader in a way
that it does not needed to be changed for each framework extension.

If we´ve got such a generic file format with a generic reader, it is easy
to extend it with a writer component. Than we can use the
mechanisms to pass structured values across process/network
boundaries. The receiver might not even be the same kind of program.
It will know about what was sent and might only care about a part of
the data received.

In particular you want to address the following forces:

• You want to pass an open set of structured data to an (abstract)
operation.

• You want an internal and external representation of these data-
structures that can be used universally.

• Client program code should not need to care about the memory
management of these structured data values, even if their memory
consumption will require it.

• The built-in type system of the language is not flexible enough to
support these issues directly.

Solution Create an abstraction for structured values that is self-describing:
Use an Anything. An Anything can represent simple values, like
booleans, integers, floating point number, or strings. In addition it
can keep an indexed sequence of Anythings or a sequence which
allows indexing by names, like a property list.

The implementation of Anythings consists of a handle class Anything,
and of a collection of implementation classes all derived from a root
class AnyImpl defining the common abstract interface.

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Anything

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

void RenderAll(Reply &r, ...);

However, this is even more error-prone, because then the caller is
responsible for providing some useful parameter list and the called
operation needs to figure out what is passed how. In addition the (...)
parameters are generally passed untyped.

It is beyond the scope of this example to show all other options and
infrastructure possible. But for now, we see there are some design
challenges.

Context You are developing a flexible or configurable piece of software in a
typed language like C++.

Problem This pattern addresses several problems conjointly. It fits in, where
Property List is not be sufficient. This is the case when you do not just
want to keep a map to simple data values or objects, but structured
data that also includes sequences of data, or just simple values as
attributes or parameters.

How do you provide method parameters or object data attributes that
fit the need for future subclasses?

Consider you are passing strcutured data values around. If you use
classes to describle these data structures, each extension of the
framework requires its own extension of the parameter class. This
rises a whole set of other problems, like how and where to instantiate
the paramer objects, where and how to specify the concrete data
values, when to destroy the parameter objects. Using C++ open
parameters like void foo(…) is also no optimal solution.

How do you make different subsystems compile-time independent and
allow for “slippage”?

If you are developing a larger software system where subsystems
should be modified and extended independently stability of the
interfaces is a more important requirement. Such a cross-subsystem
interface then requires flexible parameters. The use of a hierarchy of
parameter classes is no option, because each extension will impose a
re-compilation and eventually changes of both subsystems.

How do you provide a generic configuration or communication data
strcuture that is easily extensible?

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Anything

The Anything design pattern provides a generic structured data
container that is useful as universal (catch-all) operation parameter.
In addition Anythings are well-suited as a flexible means of storing ,
retrieving and transmitting structured data values. This makes
Anything an ideal implementation technique for configuration data.

Example We are developing a framework for creating HTML output. Each
HTML construct is created by a component called renderer. We want
to call each renderer in a generic way, but unfortunately they require
completely different number and types of parameters.

class Reply ; //collects output
struct Parameter {};
class Renderer { // abstract
public:
void RenderAll (Reply &r, const Parameter &p)=0;
};
class StringRenderer {
public:
void RenderAll (Reply &r, const Parameter &p);
};
struct StringRendererParameter : public Parameter {
String language; // allow for language specific strings
Map<String,String> values; // map language to value
};
class ImageRenderer {
public:
void RenderAll (Reply &r, const Parameter &p);
};
struct ImageRendererParameter : public Parameter {
String imagepath ;
StringRendererParameter alternate ;
String imagename ;
};

For each Renderer subclass we need to describe the required
parameters as a separate subclass. In addition we need some means
to fill in the correct parameter subclass when activating a specific
renderer object. In addition down-casts of the Parameter reference are
required and these might fail at run-time.

One option out of this dilemma is to use C++´ open parameter list like

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Property List

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

• Misuse. It is easy to misuse the Property List pattern to loose all type-
safety of your language environment. This happens very often when
the “hammer syndrome” occurs to a developer.1 Some people might
even consider the proposed persistence mechanism based on
property lists a “misuse”.

• Memory Management. A design decision to be taken is if get()
operation returns a copy of the slot value or a reference to it for
performance reasons. In the latter case, if you are implementing
Property List in a programming language where memory management
is left to the programmer, you need additional mechanisms to keep
track of memory used by slot values.

1. We refer to the situation typically described as “give someone a hammer (property list) and everything
looks like a nail”.

See Also Registry can be implemented using Property List. Anything is an
alternative to Property List if deeper structure is required. Kent Becks
Variable State [Beck96] is similar to this pattern in Smalltalk.

Credits The example using property lists for attributes of drawing objects is
based on early versions of Erich Gamma´s JHotDraw drawing editor
framework. Thanks to Dirk Riehle [Riehle96] who notified me (Peter)
about the absence of a pattern version of Property List.

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

related within the class hierarchy. Consider our graphical object
example: There classes Circle and Rectangle can share attribut
´fillcolor´even if they are not directly related in the hierarchy.

• Flexible Parameters. Using a Property List as a parameter in an
interface definition allows for covariant extension of a system. Client
program code can supply parameter slots, that are used by co-
developed implementors of the interface.

However, the Property List pattern also has its liabilities :

• Possible confusion. If you use normal attributes and property lists
there are different ways to access regular and dynamic attributes
defined as properties. A programmer extending your components
might be confused by the different syntactical ways for accessing
attributes.

• Type safety is left to the programmer. The code using a property list
must know how to interpret a given result. This might result in
additional code for type checking and error handling. If your
programming language provides meta-information it is at least
possible to detect the type of a value retrieved from the property list
and perform only allowed operations on it.

• Naming of slots is not checked by a compiler. This situation might
result in hard-to-detect errors that wouldn´t occur with normal
attributes. Just consider what happens with 'color' vs. 'colour' in our
example.

• Semantics of attributes not given by owner class code but by client
code. If several clients use the same slot names they might influence
each other without notice, or they might have different perception on
how to interpret a given attribut. For example, is ´color´ defining the
line color or the fill color?

• Run-time overhead can be substantial because of name-lookup.
Especially in contrast to a compiled indexed memory access a name
lookup and eventually type-check can be orders of magnitudes more
expensive. If you expect slow performance, carefully decide where you
have other implementation options.

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Property List

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Anything . The Anything pattern is similar to implementing nested
property lists. However, because there are more issues to discuss, it
is described as a separate pattern below.

Known Uses Most current component construction kits, like Delphi, Visual Basic
or Java Beans have property lists attached to each component that
can be used to define and fine-tune the look and behavior of the
components.

Factory Method can be implemented nicely using a property list of
Prototype objects [Beck96], View Handler [MäBi96] might use a
property list to store managed windows.

Consequences The Property List pattern implies the following benefits :

• Black-box extensibility. A property list allows you to attach new values
to an objects by client code without changing the object´s class. This
mechanism assists in extending a system even if its basics are only
available as “black-boxes” without the source code.

• Extension with keeping object identity. Property List allows client
program code to extend existing objects with keeping their object
identity, thus eliminating one of the drawbacks of wrapping the object
to extend its functionality.

• Iteration over object attributes. It is possible to iterate over a property
list´s entries. This allows you to implement generic mechanisms
manipulating objects easily, even when your programming language
does not provide you with the required meta-information on a class´
inner structure. Examples of such mechanisms are an object
inspector and object serialization.

• Per-object Attributes and possible memory optimization. In systems
where instances of a class play different roles, their required attribute
space might vary heavily. Defining all attributes that might be needed
through an objects lifetime as regular attributes in your programming
language might impose a huge memory overhead. This benefit might
make property lists useful even in languages like smalltalk.

• Attribut sharing across class hierarchy. Using the same slot name a
program can simulate using identical attributes with objects not

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

3 Implement your Property List component with the data structure of
your choice. Property lists are often implemented using hash-tables
or some other style of implementing look-up. It is beyond the scope of
this pattern description to discuss all options you might use for the
name to value mapping and for storing the associations. A good
advice might be to use the dictionary or map types your favorite class
library provides. In Java there is already a property list standard
class.

An important implementation decision is the behavior in the case a
client tries to access a slot that is not in the property list. Either a new
slot with a null value is created automatically, the property list
returns just a null value to show the missing slot or it raises an
exception.

4 Implement your Owner class(es). These classes take a property list as
an attribute. You have to decide if you want to implement all
attributes as just mapping them to the property list. However, you
might want to provide specific operations for clients, that hide the
property list implementation of these attributes. Nevertheless, for
easy extensibility by clients, provide generic set and get operations on
the property list of your owner class(es).

You get a nice side-effect if you implement all attributes of the owner
classes as slots in a property list. Then object serialization can be
reduced to store the property list. This mechanism can be provided by
the Owner classes´ base class in a generic way. Especially in the
situation of prototyping a program this might be handy and allows a
programmer to concentrate on functionality issues instead of building
infrastructure.

5 Implement Client components. Very often these client components are
the ones that define some or even most of the properties semantics.
They will use the slot names to set, read and modify property values.

Variants Property Lists as parameters. Passing a property list as a parameter
allows a client component to extend the amount of data passed to an
operation at will. If you want to keep stable interfaces, shared by
different teams, but are still heavily under development, property-
lists as parameters or attributes can be a real life-safer (see also
Anything).

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Property List

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Dynamics Since the property list is typically used as a flexible data storage, no
very interesting dynamic scenarios can be shown.

Implementation To implement the Property List pattern perform the following steps

1 Analyze carefully where you will need property lists. Prototyping or
explorative programming might be much easier if you use property
lists as attributes. Look at the consequences section if the liabilities
using property lists, like the code and run-time overhead, do not
hinder you from its application.

2 Decide what kind of slot index you need and what data types should
be stored as slot values. The most generic pair of types for the
property list association would be (object,object) but this is only
useful if your language and concrete problem allows you to create the
index objects easily. A typical choice is to use strings for the slot
indices. Depending on the implementation of the mapping having a
slot index type with a good hash function might be preferable. Slot
values are often object references, especially in single-rooted OO-
languages, like in Java. If you only want to provide simple values
(integers, doubles, characters) as slot values a C-union like structure
might be sufficient. For example:

union slotvalues {
char c;
int i;
double d;

}; // the client will know what to use

many

 Owner

PropertyList pl

get(name)
set(name)
getPropertyIterator()

PropertyList

Map<name,value>

set(name,value)
get(name)
removeslot(name)

Client

task

accesses

properties

Slot

String name
SlotValue value

hash()
isequal()
assign(newvalue)

holds

this association is im-
plemented by the Map
class. There might not
be an explicit Slot
component in a con-
crete implementation

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

or the client code has to decide how to interpret the value returned,
e.g. by “downcasting” it. A property list can be dyamically modified. It
is stored in an object as a single attribute.

Using property lists throughout your class hierarchy allows you to
use the same “attribute name” (i.e. slot name) for attributes with
identical semantics (e.g. “line-width” might make sense for lines and
hollow shapes in your graphical object hierarchy, but it will not be
useful for points or filled shapes).

Structure If you use Property List in your program, you would usually define a
utility data structure implementing these property lists. The data
structure holds a map from slot names to values (aka dictionary).
This results in the following components used: client, owner, property
list and—depending on the implementation—a slot with a index type
and value type.

Class
Owner

Responsibility
• holds a property

list.
• provides interface

to get and set slot
values via names

• can map semantic
operations to prop-
erty list implemen-
tation

Collaborators
PropertyList

Class
Client

Responsibility
• accesses Owners

properties via
Owners interface

• defines what prop-
erty names to use
and what to do
with the values

Collaborators
Owner

Class
Property List

Responsibility
• provides dynamic

table of slots with
(name,value) pairs

• provides access to
slot values via
names.

• provides iteration
over slots

Collaborators

no CRC cards for
slot names and slot
values are shown

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Property List

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

If you want to provide white-box extensibility, it might be hard to
design the interfaces flexible enough to be used for later extension.
For example, it might be hard to define the exact type and amount of
data to be passed to an operation, which implementation is not yet
written. Nevertheless you also do not want future extensions to break
encapsulation. How do you define parameters in a flexible way?

If you prepare for black-box extensibility, client components might
require your components to store information that you cannot guess
in advance as the network node reference in the example. How do you
define the attributes of your components in a way they can be extended
by client components?

Both cases might force you to design class hierarchies, where objects
sharing identical attributes cannot be related directly in the
hierarchy. And, where factoring such shared attributes to a common
base class would either break encapsulation or would bloat the root
classes as it is the case with the fillcolor attribute in the example. How
do you implement these common attributes, showing that they are
really the same to a programmer of a client component?

A last situation to consider is when you have objects that follow some
life-cycle, where specific attributes only make sense during a some
period of time. How do you implement attributes that should be
attached or detached during runtime?

In dynamic languages like Lisp or Smalltalk these issues do not arise,
because the language environment itself provides enough flexibility.
However, in type-safe compiled languages like C++ or also Java,
defining flexible parameters or attributes to be attached or detached
at run-time can be a design challenge.

In particular you want to address the following forces:

• Attributes should be attached/detached at run-time.

• Objects share attributes/parameters across the class hierarchy.

• You want to pass an open set of parameters to an operation.

Solution Provide the objects with a 'property list'. This is a data-structure that
allows to associate names (e.g. string values) with arbitrary other
values or objects. Each name identifies a so-called slot. Each defined
slot will refer to or store an object or a value of a given type. The owner

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

too much overhead. Nevertheless, users should be able to construct
a composed graphical object using different line widths.

In addition we are developing a framework. Framework users might
want to attach semantic information to our graphical objects, for
example, associating a circle with a network node in a network
topology view.

We are stuck with a situation where common attributes do not help
us with defining the class hierarchy and where we do not know all the
needed attributes up-front.

Context You are developing a flexible piece of software, that has to be extended
in the future. You are using a static typed language without built-in
support for very flexible data types.

Problem In the given context, several areas arise similar problems.

GCircle

radius
fillcolor

Gline

endx
endy

GComposite

content

GPoint

color

Gobject

originx
originy

GRectangle

fillcolor

?

?

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Property List

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

Property List

The Property List design pattern is used to attach a flexible set of
attributes to an object at run-time. Each attribute is given a name
represented by a data value (not an identifier in the programming
language) and attributes can be added or removed on a per object
basis.

Example We are building a framework for a graphical editor. A key abstraction
in that framework is the class for graphical objects Gobject. We want
subclasses of Gobject to represent geometrical forms. Let us consider
just the attributes of Gobject and its descendents. We might end up
with the following structure:

class Gobject {
int xorigin, yorigin;
};
class GPoint extends Gobject {
int color;
};
class GLine extends GPoint {
int xend, yend;
};
class GRectangle extends GLine {
int fillcolor;
}
class CompositeGobject extends Gobject {
Vector content;
}

Now we are adding circles to our Gobject hierarchy.

class GCircle extends ??? {
int radius;
int fillcolor;
};

Should we inherit from GRectangle to obtain a fillcolor attribute, or
should we refactor our hierarchy and use multiple inheritance to
merge-in the attribute fillcolor? Both ways have their problems.

How can we incorporate additional attributes like line width. In a
CompositeGobject storing the line width for each element might be

Do-it-yourself Reflection

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

black-box extensibility: You provide complete components that
perform some tasks on behalf of clients components.

One of the key issues of white box extensibility is to define stable
interfaces, that you can use for even unforseen extensions.
Nevertheless, flexible interfaces should not impose too much
overhead.

Both means of extensibility require some means of managing the used
components and often managing some configuration data of these
components in a concrete system.

Credits We thank our current and former colleages that worked with us and
designed systems where we mined these patterns. Special credits to
our EuroPLoP shepherd Robert Hirschfeld and all the organizers of
EuroPLoP 98.

Remarks Only the Registry pattern should be considered for review in the
EuroPLoP 98 Writers Workshop. The Named Object pattern is reviewed
within a Writing Workshop, for helping Marcel getting a deeper
understanding of pattern writing. Therefore it is not part of this
document for EuroPLoP 98.

©”Copyright IFA Informatik, Peter Sommerlad, and Marcel Rüedi, all rights reserved
Permission to duplicate for all purposes regarding EuroPLoP 98

File: eplop98final last update: 28.05.1998 printed: 28.05.1998

Do-it-yourself Reflection

Authors Peter Sommerlad and Marcel Rüedi
IFA Informatik, Zurich, +41-1-273 4646
sommerlad@ifa.ch, rueedi@ifa.ch

We wrote down this collection of design patterns, because
they describe well-known practice. They all have been used
in building flexible systems or frameworks. We call them “do-
it-yourself reflection”, because they follow some of the
principles of reflective systems, accessing program elements
by the program itself. They index program elements by data
values (e.g. strings as names) not by program language
identifiers.

The four patterns are Property List, Anything, Registry, and
Named Object. Property List and Anything deal with
flexibility in type and number of attributes or parameters.
Registry and its special form Named Object provide
mechanisms for managing global resources or objects in a
systematic and flexible way.

The Object System pattern [Noble98] submitted by James
Noble to EuroPLoP 98 takes the core ideas of reflection to the
extreme and shows you how to build your own reflective
object system from scratch.

Shared Context Consider you are developing a flexible piece of software, that
has to be extended in the future. There are two approaches
to it:

white-box extensibility: You define abstract interfaces to
be competed by subclassing, or

