Jens Coldewey: Architectures for flexible product support

Jens Coldewey
Coldewey Consulting
Uhdestr. 12
D-81477 München
Germany
Tel:
+49-89-74995702
Fax: +49-89-74995703
email: jens_coldewey@acm.org

Architectures for Flexible Product Support

Submission to OOPSLA ‘98 workshop
„Meta-data and Active Object Model Pattern Mining Workshop”

This paper is the very start of a pattern language. It contains three proto-pattern sketches that describe the basic alternatives you have when you try to bring a meta-system into life. I have neither looked for known uses by now (although there should be plenty of them) nor did any of the tough reviews a good pattern should have. So it’s not much more than a start.

Configuration

Thumbnail

Sometimes it is sufficient to describe the flexibility of a business system with a set of parameters while the processing is quite stable, therefore implement the flexibility by providing configuration data rather than developing a complex meta-model.

Example

Not too long ago, the life insurance business in Europe was highly regulated by law. The customers paid a monthly fee onto her or his account and the insurance company guaranteed to invest the money as good as possible. The only flexibility the contracts had was the amount of money you had to pay per month and some options, such as risk coverage. The products were not part of the competition. Rather the insurance companies competed with their investment strategies. The contracts themselves were described with a few numbers, such as monthly sum, duration of the contract and age of the insured person.

Problem

How do you provide enough flexibility in your product when the behavior is not subject to changes?

Forces

The more flexibility you provide, the more complex your system becomes, ...
... but there is always a risk that the legal situation or the company’s strategy changes, so lack of flexibility may come up and haunt you later

Speed of development often is high when an experienced team of domain programmers have to build a system without too much flexibility, ...
... but in the longer term the time-to-market for new products may be an important factor in competition.

The product configuration should need a minimum of programming activities – ideally the domain experts should be able to implement new products without help from IT personnel, ...
... but often changes to the products are critical to the economical success of the company, therefore the effect of every possible change should be well-understood.

The more domain knowledge the system reflects, the easier it is for maintenance programmers to understand it five years later, ...
... but hard coded domain knowledge is slow and expensive to change if the domain changes and every change may blur the initial architectural vision of the system.

Solution

Identify the data that determines the products and store it as configuration data. Use this configuration information rather than hard coded data to process the product.

Consequences

Configuration is easy to understand and easy to use. It provides flexibility in all the aspects you have cared for during analysis and design – but nothing beyond. If the business calls for new structures in the products or different processing you may easily find yourself building a new system.

An experienced team of analysts, designers and programmers will be able to implement a configurable system pretty fast, as long as they don’t have to cope with configurable structure or highly flexible functionality. Both of these issues may turn the project into a nightmare.

Because most business systems rely on (relational) databases, it is easy to provide a few forms to configure the system with effective access control. As long as the configuration only affects domain level parameters, the consequences of changes are pretty obvious to domain experts. However, if you start to configure structures or processes, the configuration data becomes extremely complex pretty soon. You usually can’t expect domain experts to understand the complex data structures needed to provide structural flexibility – according to my experience you can’t even expect most IT experts to understand them.

The models of configurable systems are often quite close to the “plain” domain model. Therefore it usually is easy to identify the code you have to change to implement any changes. However, since the technique allows structural flexibility only to a very limited extent, every additional product structure expands the system. Thus configurable systems tend to expand only slightly slower than hard coded systems. After several years you may still end up with patchwork.

See Also

??? Paper of Brian & Joe ???

Full Reflection

Thumbnail

Often time-to-market is extremely important for the success of a new product idea, while technical aspects, such as performance or ergonomics may suffer, therefore build a reflective system to support maximum flexibility.

Example

As more and more regulations on European life insurances were cancelled, the companies started with a bunch of new product ideas. They combined life insurance products with classical investment product, such as stock trusts, or they developed “total care” products that aimed at certain client groups rather than at a certain type of insurance. Being able to offer the first “Student Package” covering car, health and life insurance became a major competitive advantage, being able to react on such a challenge fast became a question of survival.

With the exploding number of products it became more and more important to have laptop based sale systems that assist the brokers in consulting the clients. These systems should be able to support as many different product structures and behaviors as possible without any code change.

Problem

How do you provide a maximum of flexibility without code modifications when performance is not a crucial issue.

Forces

The more abstract the implemented model of the system is, the more flexible it is, ...
... but abstract systems are hard to understand if you just have to make a minor change to it.

Abstract systems often result in very fast development, because you don’t have to understand every detail of the domain, before you start design and programming, ...
... but too much abstraction may lead to loosing the focus of business needs, because the team fights with technical issues rather than with domain issues.

Time-to-market is crucial for most domains, ...
... but runtime performance also becomes the more important the higher your sales figures for a certain product are.

Solution

Develop a meta system where product information is used to control all aspects of the systems: parameters, structures, behavior, user interfaces, and so on. Provide a user interface to change the meta information.

Consequences

A meta-system provides maximum flexibility
. With techniques as described in [JOa98] you can define any product you whish without programming. However, the object model doesn’t have too much resemblance to the domain model, it is a world of its own. So a programmer who has to change something in this system in five years may have quite a hard time to understand what is going on. I don’t know, whether this really is a problem, because at least new business requirements should not affect the system in the future, but you should at least waste a thought on this possible drawback.

Building a Full Reflective system is a good choice for incremental development. Because the system is very flexible you don’t have to bother too much about understanding every detail of the domain. Still, there is a significant danger that you miss important domain issues because they seem not to be relevant to the meta approach.

One important aspect joins the game when performance or mass data is important. In a reflective approach the system ideally has no notion of the domain but retrieves its behavior by interpreting the meta information. This interpretation process needs additional resources, which becomes less and less important as processing resources become cheaper and cheaper. However, if you want to store the data in a database, you have to deal with slow disk drives rather than with fast processors and memories. You usually get the best performance results when you take domain knowledge into account during tuning [KCo97]. Meta-data Compiler (page 6) deals with this issue.

See Also

Reflection is discussed in detail in [BMR+96].

Plugable Component

Thumbnail

Introducing a new product often is considerable effort so that it is acceptable to install new products on the affected systems with a installation procedure as simple as possible, therefore encapsulate product descriptions into Plugable Components that have enough meta-information to provide a product independent interface while the interior design of the component may be tuned to the concrete product.

Meta-data Compiler

Thumbnail

Meta-data interpreters often have not enough performance to work under high load requirement, therefore use a special compiler that translates the meta model into tuned code and database layouts using standard optimizing techniques as appropriate.

Acknowledgements

Thanks to Dirk Riehle who provided significant input during a spontanous coffee break in Zürich. I’d also like to thank my clients at Generali and Ruth Leuzinger at Zürich Insurance for all the fruitful discussions I’ve condensed in this paper.

References

[BMR+96]
Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern-Oriented Software Architecture – A System of Patterns, Wiley, 1996

[JOa98]
Ralph Johnson and Jeff Oakes: The User-Defined Product Framework; 1998 (available via the authors johnson@cs.uiuc.edu or joakes@itthartford.com)

[KCo97]
Wolfgang Keller, Jens Coldewey: Relational Database Access Layer in: Robert Martin, Frank Buschmann, Dirk Riehle: Pattern Languages of Program Design 3, Addison-Wesley; 1998

� Theory enthusiasts would call it “Turing complete”.

Page 3 of 6

