Configuring dynamic objects in Smalltalk

Joseph Pelrine

Daedalos Consulting

Position paper for

Metadata and Dynamic Object-Model

Pattern Mining Workshop
OOPSLA '89, Vancouver, BC

Joseph Yoder et al., organizers



Smalltalk is an ideal language for modeling dynamic systems. Lack of strong typing, combined with reflective facilities, no compile/link/debug cycle, and a fully integrated development environment combine to increase speed and effectiveness. Sometimes, though, even that is not fast enough.

When business logic changes on the fly, there is little time left for developers to catch up. Ways are sought for either creating new objects, or for configuring existing objects, to reflect these changing roles. Patterns for implementing this in Smalltalk are (for the most part) already documented, while others need to be.

The author takes the position of being a cautious practitioner (as well as a Smalltalk bigot), and has a number of concerns, which he worries about.



Back when we all started learning about objects, one of the first things they told us was that an object consisted of state and behavior. When an object changes rapidly, though, when does it stop being that object, and actually becomes another object? How much change, and what change can an object suffer without losing its identity?

If we look at the two aspects of changing state (or structure) and of changing behavior, we will see that they are similar to problems already occurring in Smalltalk. A quick look at the solutions to these problems may give us some new ideas about how to solve other problems.

1. Unknown object

A change in the state or structure of an object is a very difficult transformation to map. Rid of a known structure, an object becomes no more than an amorphous lump of bytes. In any case, it is extremely difficult to create an object whose behavior will be more than the sum of its accessor methods and some generic behavior defined in Object.

A similar problem exists in Smalltalk in inter-image communication, where an object is read in from a binary stream, and where no class definition for the objects' class exists in the image. Runtime packaging tools will exclude all classes are not explicitly referenced, and the packagers have no way of figuring out which classes may come in via streams. 

An elegant solution for this is the AutoRecord [Steinman 1997]. Instances of AutoRecord have all the behavior of IdentityDictionaries in addition to a very special meta-behavior. They add state accessing behavior on the fly.

AutoRecord instances pretend that they have state corresponding to any unary message received for which they contain a key. In such a case, they return the previously stored value at that key, or a default value (normally nil) if they do not contain that key. Conversely, instances respond to any keyword message received. In such a case, they store the argument at the key corresponding to the keyword preceding the argument. 

AutoRecords are quite useful as an implementation of the NullObject pattern [Woolf 1998], or as a "bit-bucket".

2. Known object

Changing the behavior of a known object is easier, and solutions exist which range in complexity from simple to "off-the-wall". Most existing solutions are documented in pattern form in [Beck 1996] and [Gamma 1995], with implementation examples in [Pelrine 1996] and [Pelrine 1998]. 

One of the standard ways to change an object's behavior at run-time is by using what Smalltalkers call "Pluggable Behavior". The following four pluggable behavior techniques are relatively widely known, and will not be described in more detail here:

· State flags

· State object / strategy object

· Pluggable selector

· Pluggable block

A common characteristic of all the above techniques is the use of instance variables to hold behavior objects, thus turning behavior into state.

An extreme form of pluggable behavior is the use of a pluggable, or instance-based method dictionary [Pelrine 1998]. Although allowing the most flexibility, this technique is considered "clever", and not thought to be best practice for production systems. Also, in some cases, use of this technique will require including the Smalltalk compiler in the runtime image, thus increasing image size as well as bringing up a number of licensing issues.

Another technique which I have used successfully a number of times is active event table manipulation [Pelrine 1997]. This technique is based on the event-handling framework originally implemented in Digitalk Smalltalk [Messick 1993], and which served as the basis for PARTS Workbench and VisualAge Smalltalk event-driven, visual programming paradigm. The event-driven communication model is an example of the Self-Addressed Stamped Envelope pattern [Brown 1995], related to the Observer pattern [Gamma 1995].

With this technique, the events that an object responds to, and the messages it performs in response, are contained in event tables, which are also instance variables. Since the event tables themselves are also objects, they can be manipulated to provide any desired behavior, and the Digitalk framework provides a public interface for doing just that.

3. Caveats

Being a practitioner, I also tend to look at the dangers and problems of using such techniques. I'd like to quickly present a number of concerns, which may or may not be relevant, depending on the application context.

Debugging

Smalltalk makes all this stuff (meta-level programming) easy. Too easy, in fact. When you meta program, you are no longer really programming in Smalltalk. The toolset doesn’t support you that well. You can no longer read a line of code and guess what it does correctly.

Meta-level programming is important for mastery of Smalltalk, but it is not important for effective engineering. In fact, it's far more important to know when NOT to use it than it is to know how TO use it. - Kent Beck

Security

In the past, I've worked for a number of clients who were so worried about security considerations that they e.g., would not allow any program-generated dynamic SQL to be used. Depending on project priorities (and on management), it may be difficult to get management to buy into using such techniques.

Data-only objects

One problem with constructing new classes and objects on the fly is that such objects' behavior is reduced to the sum of its accessor methods and some generic behavior defined in Object. These data-only objects are antithetical to good object design.

Performance

All the aforementioned techniques use some means of indirection, which always comes at the cost of performance. Depending on the application domain, this could be more or less of a problem.

I believe that the use of well-established implementation techniques can allow the development of a flexible, configurable object-model and system, but am hesitant to build too much upon the shifting sands which may result from careless use of such techniques.



References

[Beck 1996]

Kent Beck

Smalltalk Best Practice Patterns

Prentice Hall, 1996

[Brown 1995]

Kyle Brown

Understanding inter-layer communication with the SASE pattern

Smalltalk Report, November-December 1995

[Gamma 1996]

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

Design Patterns

Addison-Wesley, 1995

[Pelrine 1996]

Joseph Pelrine

Techniques of meta-level programming

European Smalltalk Summer School, Lausanne, Switzerland, August 1996

[Pelrine 1997]

Joseph Pelrine

Modular Smalltalk

European Smalltalk Summer School, Nice, France, August 1997

[Pelrine 1998]

Joseph Pelrine

Guru 101 - Grokking the Smalltalk system

Object Expo, London, July 1998

[Woolf 1998] 

Bobby Woolf

The NullObject Pattern

Pattern Languages of Program Design 3. 

Robert Martin, Dirk Riehle, and Frank Buschmann (editors)

Addison-Wesley, Reading, MA, 1998

Software

[Messick 1993]

Steve Messick et al.

Smalltalk/V Event System

Digitalk, 1993

[Steinman 1997]

Jan Steinman et al.

Bytesmiths Toolkit



About the author

Joseph Pelrine is a senior member of the Daedalos Consulting Group. He is currently working in Munich, where Kent Beck has asked him to assist in his latest eXtreme Programming project. A former columnist for the recently deceased Smalltalk Report, he is currently co-authoring a book on ENVY/Developer with Alan Knight and Jan Steinman, which is to be published by Cambridge University Press in 1999. He can be reached at jpelrine@csi.com.

